Our group is currently working on the following projects:

Heterozygosity and fitness in fur seals

Kerguelen Seebär AA männchen weitwinkel 4 (2)Pinnipeds are challenging to study as they are semi-aquatic, breed in remote and crowded colonies, and can be highly aggressive.  Fortunately, a scaffold walkway above a colony of Antarctic fur seals (Arctocephalus gazella) at Bird Island, South Georgia, allows all of the animals that come ashore to be studied with minimal disturbance.  In collaboration with Dr Jaume Forcada of the British Antarctic Survey, we have analysed genetic samples collected over two decades to discover the parentage of over a thousand pups.  A remarkable picture of breeding behaviour has emerged.  The most successful males appear to arrive first in the colony, stay for more days per season and come ashore for more seasons in total.  However, although the traditional picture is one in which males fight each other for access to females, the opposite appears to be true; males stay rooted to the spot while females appear to actively choose their partners.  We have also shown that heterozygosity correlates with virtually every male fitness trait measurable, including territory-holding ability, body size, reproductive success and even attractiveness.  More recently, we found that increasingly frequent adverse climactic events correlated with low food availability have led to profound phenotypic changes in the population, including an 8% decline in pup birth weight since the mid 1980s.  In parallel, average breeding female heterozygosity has increased by 17% over the past two decades, consistent with a temporal increase in the strength of viability selection on homozygous offspring.  We are now using a high-density single nucleotide polymorphism array to explore this phenomenon in greater detail.
Funded by:  the DFG

Mechanisms underlying heterozygosity-fitness correlations

Seehund DE 120Many important fitness traits including parasite resistance, survivorship and reproductive success often correlate with heterozygosity in natural populations.  Such heterozygosity-fitness correlations (HFCs) have the potential to influence interactions between pathogens and their hosts, and the evolution of mate choice.  However, HFCs have become the focus of a long-standing debate as most studies use only around ten microsatellite markers.  While this number is enough to detect many HFCs, it is too few to elucidate which of two possible mechanisms could be most important.  In collaboration with Dr Kanchon Dasmahapatra,  we are helping to resolve this question through the application of high-throughput sequencing.
Funded by:  Marie Curie

Population genetics of Southern Ocean predators

fur seal colony)Many animal populations have been strongly affected by anthropogenic influences, including direct exploitation and climate change. Also, many of the most rapid and profound environmental changes are currently being experienced at high latitudes. The amount of genetic variation within a species determines its capacity to respond to selection and hence to adapt to these changing pressures. However, a species’ adaptive potential is also likely to be influenced by its demographic history and contemporary levels of population genetic connectivity. Top-trophic high-latitude predators are likely to be among the first to display the impacts of environmental change because their prey are directly affected by bottom-up changes in the ecosystem. Consequently, it is of interest to understand how genetic variability, historical demography and population structure may interact to shape the future resilience of these species.  Together with Dr Andy Lowther and Prof Kit Kovacs, we are using molecular markers to compare and contrast the circumpolar population structures and historical demographies of two key Southern Ocean predators, the Antarctic fur seal (Arctocephalus gazella) and macaroni penguin (Eudyptes chrysolophus).  We will also evaluate the ‘krill surplus hypothesis’, which predicts that macaroni penguin populations may be in decline as a consequence of increasing competition for food with other top-predator species, such as the fur seals.
Funded by: the Norwegian Research Council

Pinniped population genetics


We are also involved in collaborative research on several other pinniped species, including grey seals (Halichoerus grypus), South American fur seals (Arctocephalus australis), Southern sea lions (Otaria flavescens), Northern elephant seals (Mirounga angustirostris) and Steller’s sea lions (Eumetopias jubatus). Many of these projects use molecular genetic approaches to elucidate the underlying population structure, which has important implications for conservation.  For example, our work on Steller’s sea lions has revealed a clear phylogenetic break within the range of this threatened ‘flagship’ species, in support of previous mitochondrial studies revealing two discrete stocks, and consistent with the observation that two stocks show opposite growth trajectories.

 Sea lion speciation genomics

Seeloewe GG 936One hundred and fifty years after Charles Darwin’s seminal work On the Origin of Species, the quest for the mechanistic underpinnings of speciation has begun in earnest.  Among the most promising systems to reveal the evolutionary processes that control adaptation and govern the early steps of speciation are evolutionary young lineages diverging along strong environmental gradients.  In particular, marine species provide ideal systems in which to test whether ecologically divergent selection in the absence of physical barriers to gene flow can lead to heterogeneous genomic divergence.  Sea lions from the Galápagos provide just such a system.  The species has a tiny geographic range relative to it’s dispersal capability but occupies a steep environmental cline between the nutrient-rich grounds around the young western islands and the islands on the shallow central shelf of the archipelago.  These environmental contrasts translate into marked differences in morphology, diet and the underlying genetics.  In collaboration with Prof Jochen Wolf, we are using whole-genome resequencing to quantify patterns of genomic divergence at base-pair resolution between ecologically and genetically divergent sea lion populations.
Funded by: the DFG

Olfactory communication in pinnipeds

Olfactory communication underpins virtually all aspects vertebrate social flying_and_first_pup_304life, from mother-offspring communication through kin recognition to mate choice. In particular, scent seems to be an important pathway for signaling complex information about an individual’s genetic makeup, such as heterozygosity and relatedness. However, the extreme complexity of vertebrate odours has largely precluded an understanding of the link between odour and genotype.  Antarctic fur seals provide an ideal model system for studying olfactory communication in a free-ranging marine mammal. In this species, olfaction is important for the close-range recognition of pups and breeding females also show mate choice for partners who are heterozygous and unrelated to themselves, implying that genotype could be encoded in scent. Together with Prof Barbara Caspers, we are combining gas chromatography-mass spectrometry (GC-MS) with microbiome sequencing and genetic analysis to shed light on the molecular mechanisms underlying chemical communication.
Funded by: the DFG

The costs and benefits of inbreeding

Although inbreeding is usually detrimental to fitness, theory predicts that it could have a substantial positive effect on inclusive fitness by increasing the benefits of cooperation.  In collaboration with Prof Mike Cant and Dr Hazel Nichols, we are therefore exploring the causes and consequences of inbreeding using rich, multigenerational data from a long-term study of a cooperatively breeding mammal, the banded mongoose (Mungos mungo).
Funded by: the DFG

Avian mating system evolution


Mating systems and parental behaviour are among the most diverse of social behaviours, and recent work suggests that they can be influenced by the social environment. Small plovers (Charadrius spp.) exhibit diverse mating systems, ranging from monogamy to polygyny. Consequently, in collaboration with Prof Oliver Krüger and Prof Tamás Székely, we are studying sympatric populations of three species in Magagascar, using a combination of molecular genetic and demographic modeling approaches, to identify the underlying factors that drive breeding system variation.
Funded by:  the DFG

Antarctic marine invertebrates and climate change

One of the most topical questions in science and one of the issues of greatest concern to society is how life on earth will respond to climate change.  This is particularly important for species living in polar areas where the most rapid and profound changes are occurring.  However, predicting species responses requires a detailed understanding of the genetic basis of variation in individual fitness.  Our recent study in Nature has shown that climate change is exerting increasingly strong viability selection on an Antarctic fur seal population, specifically against relatively homozygous offspring.  However, it is actually marine invertebrates that are at the greatest risk under future climate change scenarios due to the warming and acidification of the World’s oceans.  Consequently, together with Prof Lloyd Peck and Prof Melody Clark of the British Antarctic Survey, we have begun to apply genomic tools to elucidate the mechanisms by which Antarctic marine invertebrates may respond to environmental change.  One of our projects is using a novel approach based on heated settlement panels to assess the in situ effects of warming on early community development in polar seas.  We are quantifying the characteristics of successful organisms under elevated temperatures by measuring growth rates, competitive ability and upper physiological limits.  Focusing on three common polychaete species, we are also evaluating genetic differences between individuals growing on the control and heated treatments using transcriptional profiling to quantify heat shock responses and to screen functional genetic polymorphisms.
Funded by: Natural Environment Research Council



In alphabetical order

Prof William Amos, University of Cambridge, UK
Dr Alastair Baylis, Deakin University, Australia
Dr Martina Boerner, Bielefeld University, Germany
Prof Mike Cant, University of Exeter, UK
Prof Barbara Caspers, Bielefeld University, Germany
Dr Nayden Chakarov, Bielefeld University, Germany
Prof Melody Clark, British Antarctic Survey, UK
Dr Kanchon Dasmahapatra, University of York, UK
Dr Farnon Elwood, University of the West of England, UK
Dr Jaume Forcada, British Antarctic Survey, UK
Dr Robin Hankin, Aukland University of Technology, New Zealand
Prof Kit Kovacs, Norwegian Polar Institute, Norway
Prof Oliver Kruger, Bielefeld University, Germany
Dr Kim Last, Scottish Association for Marine Science, UK
Dr Florian Leese, Ruhr Universität Bochum, Germany
Dr Andy Lowther, Norwegian Polar Institute, Norway
Dr Aurelio Malo, Oxford University, UK
Dr Frank Melzner, GEOMAR, Germany
Prof Caroline Müller, Bielefeld University, Germany
Dr Hazel Nichols, Liverpool John Moores University, UK
Prof Lloyd Peck, British Antarctic Survey, UK
Dr Larissa Rosa de Oliveira, Universidade do Vale do Rio dos Sinos, Brazil
Prof Jon Slate, Sheffield University, UK
Dr Iain Staniland, British Antarctic Survey, UK
Prof Tamás Székely, University of Bath, UK
Dr Tom Wilding, Scottish Association for Marine Science, UK
Prof Jochen Wolf, Ludwig-Maximilians-Universität München, Germany

BAS Exeter  UWEUppsala Sheffield York  SAMSCambridge   Ruhr LJMUGeomarDeakinLogo BathLogo AutLogo