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Supplementary Results and Discussion 

 

Population and relatedness structure 

To provide context for our study, we first characterised the genetic structure of the black grouse 

population and tested for the presence of close kin both within and among the lekking sites 

(Supplementary Fig. 1a).  Genetic differentiation was overall rather weak, with no pairwise 

comparisons of lekking sites yielding FST values that differed significantly from zero 

(Supplementary Table 12).  However, there was a hint of population structure along a west-east 

axis, with KUM and NYR being the most differentiated lekking sites (Supplementary Fig. 1b).  

These findings are consistent with previous studies revealing weak to moderate population 

structure among black grouse leks1–3 and reflect the interplay between female dispersal and 

male site fidelity1,4,5.  Accordingly, no significant differences were found among the lekking 

sites in individual mutation loads and only one pair of lekking sites differed significantly in 

FROH (Supplementary Table 13). 

To characterise the relatedness structure of our dataset, we calculated R0, R1 and KING-robust 

kinship values for all pairwise combinations of individuals and visualised the results by plotting 

R1 against KING-robust kinship (Supplementary Fig. 1c).  Pairs of individuals were assigned 

to specific relatedness categories by computing Z scores and comparing these with the 

inference criteria of Manichaikul et al.6.  Among the 17,949 pairwise comparisons, the majority 

were unrelated pairs (17,483 = 97.4%), with only 466 pairs (2.6%) being identified as close 

kin. The close kin pairs were comprised of 27 full siblings (5.8%), 60 parent-offspring pairs 

(12.9%), 176 second-degree relatives (37.8%) and 203 third-degree relatives (43.6%). Out of 

190 individuals, 104 had at least one first-degree relative (full sibling or parent-offspring) in 

the population, 124 had at least one second-degree relative, and 143 had at least one third-

degree relative. The proportion of relatives sampled at the same lekking site was highest for 

full siblings and lowest for third-degree relatives (Supplementary Fig. 1d).  The presence of 

close male kin on black grouse leks has been described previously7 and arises due to strong 

male philopatry1,4,5.  While the risk of inbreeding is reduced by female-biased dispersal8, 

consanguineous matings may still occur as older females have a greater chance of mating with 

philopatric male kin9. 

Differences between GERP and SnpEff 
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The nearly two orders of magnitude difference in the absolute number of mutations identified 

as deleterious by GERP (n = 413,489) and SnpEff (n = 5,341) can be attributed to conceptual 

and methodological differences between the two approaches10,11. SnpEff restricts its annotation 

of high impact variants to genes, where mutations are more likely to affect transcripts and 

protein products11.  By contrast, GERP scores are calculated across the entire genome, 

including intergenic regions10.  Furthermore, SnpEff evaluates the likely impact of mutations 

on amino acid sequences11, whereas GERP quantifies evolutionary conservation without regard 

to a mutation’s functional effect on protein structure and function10.  While this disparity in the 

number of identified mutations is therefore expected, it raises an important question: are both 

approaches are equally effective at identifying mutations that reduce fitness? 

Moreover, the absolute number of deleterious mutations identified in a population can be 

influenced by numerous biological and methodological factors. Species- and population-

specific characteristics such as the mutation rate, effective population size, strength of 

selection, inbreeding levels and purging directly affect the abundance of deleterious variants12–

14.  Methodological aspects including sample size, sequencing depth and read quality also 

determine the number of reliably called SNPs15,16, while downstream analytical choices such 

as SNP filtering criteria and the choice of the GERP score threshold used to classify a mutation 

as deleterious substantially affect the final count of predicted deleterious mutations. However, 

standardising this threshold across species is difficult because the range of GERP scores is 

determined by the phylogenetic tree used for GERP score computation10. It is likely that these 

and possibly other factors contribute to the high proportion of mutations annotated as 

deleterious in the black grouse (5.9% of all SNPs) when compared to some10,14 but not all17 

previous vertebrate studies. 

We found a stronger negative effect of the total GERP load on LMS compared to the SnpEff 

load, which may reflect the distinct properties of those mutations identified by each prediction 

approach.  High GERP scores are considered strong indicators of deleterious mutations under 

purifying selection18. By contrast, although mutations classified as high impact by SnpEff, such 

as LOF mutations, are also expected to have negative effects on fitness19,20, some may instead 

be adaptive or neutral21–23, might not necessarily be relevant to the trait in question11, or their 

phenotypic effects might not be as strong as expected due to alternative splicing or because the 

function of the focal protein might be rescued by another protein24. 
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Additionally, the effect sizes of the total GERP and SnpEff load may be influenced by the 

differences in the number of mutations contributing to each load estimate. To investigate 

whether the observed effect sizes of the total GERP load and the total SnpEff load are driven 

by differences in the effect sizes of individual mutations or by differences in the number of 

contributing mutations, we performed random sampling of equal-sized subsets of mutations as 

described in the Supplementary Methods.  First, we compared the effect sizes of the total GERP 

load and the total SnpEff load after randomly sampling 5,000 subsets of 1,000 mutations for 

both prediction approaches.  The effect sizes of the total load on LMS were similar for GERP 

and SnpEff (median b estimate = -0.05 and -0.11 respectively; Supplementary Fig 3a, b), 

suggesting that the stronger association between the total GERP load and LMS in the full 

dataset is mainly due to the larger number of identified mutations, which collectively provide 

greater statistical power to detect an effect. 

To compare the effect sizes of the four genomic regions (promoter, TSS, intron, exon), we 

repeated our analyses using random subsets of 500 mutations per region.  We found that the 

effect sizes of the total load on LMS were substantially more negative for mutations with GERP 

scores ≥ 4 in TSSs (median b estimate = -0.21) and high impact SnpEff mutations in promotors 

(median b estimate = -0.29) compared to mutations in other genomic regions (median b 

estimates for GERP: promoters = -0.06; introns = -0.04, exons = 0.05; median b estimates for 

SnpEff: TSSs = -0.06, introns = -0.06, exons = -0.07; Supplementary Fig 3c, d).  This provides 

further evidence for deleterious mutations in these critical regulatory regions having 

disproportionately negative fitness effects. 

Biological processes 

While deleterious mutations could in principle affect fitness via diverse biological processes, 

previous research has identified specific biological processes that are likely to be particularly 

important for sexual signaling and sexual selection in black grouse and other animals 25–28. 

Based on this, we hypothesised that male reproductive success in black grouse would be 

especially sensitive to mutations affecting androgen metabolism (including testosterone which 

strongly correlates with sexual trait expression in black grouse28,29), cellular respiration (which 

is crucial for energetically costly behaviours such as lekking30), developmental growth (which 

predicts survival31 and territory-holding ability in black grouse30), immune function 

(hypothesized to link testosterone-dependent sexual traits to honest signaling25,26), muscle 

tissue development (greater glycogen storage in muscles allows higher display rates in male 
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black grouse32,33) and responses to oxidative stress (which influence carotenoid and melanin-

based sexual ornaments27). For details of our hypotheses and rationale, see Supplementary table 

5. 

To test these hypotheses, we used gene ontology (GO) annotations to identify subsets of 

deleterious mutations within genes associated with these six biological processes (see 

Supplementary Methods and Supplementary Table 5 for details). We then computed the total 

load for each GO term and prediction approach separately for promoters, introns and exons. 

These values were then used as predictor variables in separate Bayesian GLMMs of LMS, 

following the same model structure described above. This hypothesis-driven approach, akin to 

a candidate gene framework34, tests for associations between our six focal GO terms and male 

reproductive success, but does not allow inference about other biological processes not 

included in our a priori hypotheses. 

Overall, while the effect of the total load on LMS varied in both direction and significance 

depending on the GO term and genomic region, three distinct patterns emerged. First, GERP 

mutations in promotor regions were consistently negatively associated with LMS across all GO 

terms (Extended Data Fig. 5, Supplementary Table 6), reinforcing our earlier finding that 

deleterious mutations in promoter regions tend to reduce fitness.  Second, for androgen 

metabolism, immune response and response to oxidative stress, GERP mutations in at least two 

genomic regions were negatively associated with LMS (Extended Data Fig. 5, Supplementary 

Table 6).  Third, SnpEff mutations in immune-related genes had consistently negative effects 

on LMS across all three genomic regions (Extended Data Fig 6, Supplementary Table 7).  These 

findings are consistent with the strong selective pressures exerted by pathogens on immune 

genes35, the well-established links between sexual traits and immune function36–38, the 

importance of androgens for sexual trait expression28,29 and the detrimental effects of oxidative 

stress on numerous life-history traits39. 

Supplementary Methods 

Library preparation 

Library preparation of the 190 whole genomic extracts was performed at the Beijing Genomics 

Institute (BGI) using the BGI Optimal DNA Library Prep Kit (BGI – Shenzhen China). 

Genomic DNA Fragments were size-selected using magnetic beads subjected to end repair to 

generate blunt-ended DNA. A single adenosine was added to the 3’ ends via an A-tailing 
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reaction, followed by adapter ligation. The resulting libraries were PCR amplified and the 

double stranded library products were denatured to generate single stranded library products. 

A circularization reaction was then used to generate single stranded circularized DNA products, 

while excess single stranded linear DNA was removed through digestion. The resulting single 

stranded circularized libraries were amplified using phi29 and rolling circle amplification to 

generate a DNA nanoball (DNB) that carries approximately 300 copies of the initial single-

stranded library molecules.  

Reference genome 

For this study, we scaffolded a black grouse reference genome assembled by the 10K Bird 

Project (B10K)40,41. The black grouse individual originated from Nordland, Norway and was 

preserved at the Natural History Museum of Denmark. B10K constructed a single-tube long 

fragment read co-barcoded (stLFR) library which was subsequently 100bp paired-end 

sequenced on a DNBseq platform at the Beijing Genomics Institute (BGI). Raw reads with 

missing data (>10%), low quality (>40% bases with Phred score <= 10) or below expected 

insert sizes were excluded and PCR duplicates were filtered out using SOAPfilter2 v2.242. 

GapCloser v1.1243 was used to close gaps within scaffolds. The resulting B10K assembly had 

a total length of 1,002,957,384 bp and consisted of 26,930 scaffolds with an N50 of 5,658,217 

bp (see Supplementary Table 14 for details).  

To improve contiguity, we scaffolded the B10K assembly using HiRise together with Cantata 

Bio.  They used 200 ml of blood to prepare an Omni-C library for genome scaffolding with 

HiRise.  First, chromatin in the nucleus was fixed with formaldehyde44.  DNase I was then used 

to extract and digest the chromatin, after which the ends were repaired and ligated to a 

biotinylated bridge adapter.  The DNA was subsequently purified and unligated fragments were 

discarded.  A library was then generated using NEBNext Ultra enzymes and Illumina-

compatible adapters.  Using streptavidin beads, biotin-containing fragments were isolated and 

the sequences were duplicated in a polymerase chain reaction (PCR).  Prior to deep sequencing, 

the B10K assembly was used to quality check the OmniC library.  Finally, the sequencing was 

performed using an Illumina HiSeqX platform with a target coverage of 30x and the resulting 

reads were quality filtered (MQ > 50) and used to scaffold both pseudo-haplotypes with Cantata 

Bio’s HiRise software44.  The contiguity of the resulting reference genome was considerably 

improved, with the scaffold N50 increasing over ten-fold to 69,550,540 (Supplementary Table 

14).  Lastly, we identified the scaffold corresponding to the Z chromosome by aligning the 
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chicken Z chromosome (NCBI RefSeq assembly GCF_016699485.2) to the black grouse 

reference genome using BLAST v2.12.045.  We identified a long scaffold that showed 83% 

identity to the chicken Z chromosome, which we assigned as the black grouse Z chromosome. 

 

Genome annotation 

To annotate the scaffolded reference genome, we generated transcriptomic data from an 11–14 

day old black grouse embryo obtained from a captive breeding facility in the Netherlands.  Total 

RNA was extracted from a mixture of randomly selected embryo sections using the Qiagen 

RNeasy Plus Kit.  The extract was treated with DNase and the RNA was cleaned using AMPure 

beads and the QIAGEN FastSelect HMR RNA depletion kit.  The library was prepared by 

Genewiz Multiomics & Synthesis Solutions using the NEBNext Ultra II RNA Library Prep Kit 

and 150 bp paired-end sequenced on an Illumina NovaSeq6000 platform. 

The genome annotation was performed by Cantata Bio using the resulting RNA sequencing 

data together with publicly available RNA sequencing data (NCBI SRA Bioproject 

SRP006680). Repeat families in the genome were identified de novo and classified using 

RepeatModeler v2.0.146.  The output from RepeatModeler was then used to identify and mask 

repeated segments in the genome annotation file using RepeatMasker v4.1.047.  Two initial ab 

initio gene models were trained with the coding sequences of the chicken (Gallus gallus), 

Japanese quail (Coturnix japonica), rock ptarmigan (Lagopus muta) and wild turkey 

(Meleagris gallopavo) using AUGUSTUS v2.5.548 and SNAP v2006-07-2849 respectively.  The 

AUGUSTUS predictions were optimised in six rounds.  RNA-Seq reads were aligned to the 

reference genome using STAR v2.750 and intron hints were generated with the bam2hints tools 

within AUGUSTUS.  Subsequently, we used MAKER51, SNAP and AUGUSTUS (with intron-

exon boundary hints provided from the RNA-Seq data) to predict genes in the repeat-masked 

reference genome.  To help guide the gene prediction process, Swiss-Prot peptide sequences 

from the UniProt database were downloaded and used in combination with the protein 

sequences from the avian species described above to generate peptide evidence in the Maker 

pipeline.  The final gene sets comprised only genes that were predicted by both SNAP and 

AUGUSTUS.  The quality of the predictions was assessed using AED scores generated for 

predicted genes by MAKER.  Genes were further characterised for their putative function by 

performing a BLAST45 search of the peptide sequences against the UniProt database.  Transfer 

RNAs were predicted using tRNAscan-SE v2.0552. 
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Population structure and relatedness 

We used principal component analysis (PCA) to characterise population genetic structure.  For 

this analysis, PLINK v1.9053 was used to produce a stringently filtered SNP dataset from which 

the following were excluded (i) strongly linked SNPs, where linkage disequilibrium (LD) was 

computed in window sizes of 50 base pairs with shifts of five SNPs with a variance inflation 

factor threshold of two (--indep 50 5 2); (ii) SNPs deviating significantly from Hardy-Weinberg 

equilibrium (HWE) with an alpha level of 0.001 (--hwe 0.001); and (iii) SNPs with a minor 

allele frequency (MAF) below 0.01 (--maf 0.01).  The PCA was implemented using PLINK (-

-pca) and the results were visualized with the R tidyverse package set v1.3.154, including dplyr 

v1.1.4 and ggplot2 v3.5.1.  

Next, we quantified genetic differentiation by calculating FST values between each pair of 

lekking sites based on the stringently filtered dataset described above. FST values were 

computed per SNP using VCFtools v0.1.1755 and then averaged across loci.  To test whether 

the mean FST values were significantly different from zero, we computed 1,000 bootstrap 

replicates by resampling the pairwise FST values across loci with replacement using the boot 

package v.1.3.2856.  Finally, we calculated the absolute differences between the resampled 

mean FST values and the mean FST of the original data, summed these values and divided them 

by the total number of bootstrap replicates to obtain the p-value, which represents the 

probability of observing a mean FST different from zero. 

We used the same stringently filtered dataset to infer patterns of pairwise genomic relatedness 

among individuals following the workflow of Humble et al.57.  NgsRelate v258 was used to 

compute three relatedness indices: KING-robust kinship, R0 and R159. The KING-robust 

kinship estimate can be used to distinguish between different levels of relatedness when allele 

frequencies are unknown and is robust to population structure6.  The R0 and R1 statistics 

specify whether zero or one copies of an allele are shared, respectively.  Different categories of 

relatedness are associated with non-overlapping ranges of R1, R0 and KING-robust kinship 

values. 

To allocate pairs of individuals to specific relationship categories, we calculated the relatedness 

coefficients p̂, Z0, Z1 and Z2 using the -genome function in PLINK53.  p̂ is the overall 

proportion of the genome that is identical by descent between any pair of individuals.  Z0, Z1 

and Z2 are coefficients that estimate the proportion of the genome for which zero, one or two 
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alleles of a pair of individuals are identical by descent, respectively.  We used the method 

described in Manichaikul et al.6 to assign relationship categories to each pair of individuals 

based on theoretical thresholds of the various relatedness coefficients.  Pairs of individuals 

were assigned to one of five relatedness categories: parent-offspring, full siblings, second-

degree relatives (e.g. half-siblings and grandparents-grandchildren), third-degree relatedness 

(e.g. cousins) or unrelated individuals.  To allow minor deviations from the theoretical 

expectations for certain relationships, we classified pairs of individuals as falling within a given 

relatedness category if they were within 0.01 of the respective inference threshold, following 

Waples et al.59.  Those pairs that did not fall within the theoretical ranges of any category 

including this additional margin were classified as “unknown”. 

Controlling for the number of mutations 

We compared the effect sizes of the total GERP load and the total SnpEff load while controlling 

for the number of mutations.  We randomly sampled 5,000 subsets of 1,000 mutations 

separately for mutations with GERP scores ³ 4 and high impact SnpEff mutations. For each 

subset, we then calculated the total load and fitted this as a predictor variable in a GLMM of 

LMS.  We included core versus non-core fitted as a fixed effect and lekking site as a random 

effect.  However, to decrease computational demand, these models were implemented using a 

frequentist approach in the R package glmmTMB v1.1.1060.  We also repeated the above steps 

to compare the effect sizes of mutations residing in the four genomic regions (promoters, TSSs, 

introns and exons) separately for GERP and SnpEff.  Because there were fewer mutations on 

average in each of the four regions, we only selected 500 mutations for each random sample. 

We calculated the tolerance intervals of the b estimates, which indicate the proportion of values 

covered by the interval at a given confidence level, using the R package tolerance v3.0.0 61.  

Testing for the effects of mutations across biological pathways 

We hypothesised that mutations affecting six biological processes could be particularly relevant 

for reproductive success in black grouse males (Supplementary Table 5). To test this, we used 

gene ontology (GO) annotations to identify subsets of deleterious mutations associated with 

each biological process. A list of genes corresponding to each GO term along with their 

descriptions62 was obtained using AmiGO version 2.5.1763 (release date 2025-02-08). For each 

GO term, we then extracted the deleterious mutations located in the promoter regions, introns 

and exons of the associated genes (Supplementary Table 15). Mutations at the TSS were not 

analysed separately, as this region is considered part of the promoter and contained relatively 
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few mutations for each GO term. To ensure the robustness of the analysis, we only included 

GO-specific subsets with at least 15 mutations, which resulted in the exclusion of one GO term 

(androgen metabolism) for SnpEff. We then calculated the total GERP load and total SnpEff 

load separately for each subset of mutations and for each of the three genomic regions and 

constructed Bayesian GLMMs of LMS as described above, one for each GO term, genomic 

region and prediction approach. The total mutation loads were again z-transformed and the 

same controlling variables and random effect structure was used as described above. 
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Supplementary Figures 

Supplementary Fig. 1. Genetic and relatedness structure of the black grouse study 

population in central Finland.  (a) Geographical locations of the lekking sites, with circle 

sizes being proportional to the number of sampled lekking males (total n = 190) as shown in 

the legend.  Abbreviations: KUM = Kummunsuo, NYR = Nyrölä, SAA = Saarisuo, LEH = 

Lehtosuo, TEE = Teerisuo; (b) Results of the principal component analysis, with the lekking 

sites colour coded as shown in the legend; (c) R1 coefficients plotted against KING-robust 

kinship coefficients for all individual pairwise comparisons.  The colours of the points indicate 

relationship categories inferred by comparing PLINK Z scores with the inference criteria 

derived from Manichaikul et al. 6 as shown in the legend; (d) A breakdown of the relatedness 

structure of the population divided into comparisons within and among lekking sites. 
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Supplementary Fig. 2. Phylogenetic tree used for the calculation of GERP scores.  Shown 

is an unrooted phylogenetic tree consisting of 74 avian species that was used for calculating 

GERP scores.  Different avian clades are colour-coded as shown in the legend. 

  

  

Divergence (substitutions/site) Divergence (substitutions/site) 
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Supplementary Fig. 3. Distribution of fitness effects based on random subsamples of 

deleterious mutations. Shown are histograms of the standardised b estimates of genomic 

mutation load components based on randomly selected subsets of mutations on lifetime mating 

success. For (a) the total GERP load and (b) the total SnpEff load, we took 5,000 randomly 

selected subsets of 1,000 mutations. For (c) the total GERP load subsetted into four genomic 

regions and (d) the total SnpEff load subsetted into four genomic regions, we took 5,000 

randomly selected subsets of 500 mutations.  The white circles represent the mean b estimates, 

the thick black lines the 80% tolerance intervals (alpha = 0.05) and the thin black lines the 95% 

tolerance intervals (alpha = 0.05). The GERP load is shown in red and the SnpEff load is shown 

in dark grey. 
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Supplementary Tables 

 

Supplementary Table 1. Outputs of Bayesian GLMMs of lifetime mating success (LMS). 

Shown are point estimates, credible intervals (CIs; 95% and 80%) and R2 values of the 

standardised b estimates of the genomic predictors listed in the left column on LMS. The 

conditional R2 refers to the variance explained by the fixed and random effects, whereas the 

marginal R2 refers to the variance explained only by the fixed effects. 

 

Predictor Median 
95% CI 

(lower, upper) 

80% CI 

(lower, upper) 

Conditional 

R2 [95%CI] 

Marginal R2 

[95%CI] 

Total GERP 

load 
-0.21 -0.27, -0.14 -0.25, -0.17 

0.07 [0.04, 

0.11] 

0.02 [3.64e-5, 

0.06] 

Total SnpEff 

load 
-0.11 -0.18, -0.04 -0.16, -0.06 

0.05 [0.03, 

0.08]) 

0.01 [3.69e-5, 

0.03] 

FROH -0.14 -0.20, -0.07 -0.23, -0.05 
0.05 [0.03, 

0.08] 

8.00e-3  

[4.57e-6, 0.03] 

Homozygous 

GERP load 
-0.57 -0.76, -0.39 -0.70, -0.45 

0.07 [0.04, 

0.11] 

0.02 [1.68e-4, 

0.06] Heterozygous 

GERP load 
-0.60 -0.78, -0.41 -0.72, -0.48 

Homozygous 

SnpEff load 
-0.09 -0.17, -0.01 -0.15, -0.04 

0.05 [-.03, 

0.08] 

0.01 [2.87e-4, 

0.03] Heterozygous 

SnpEff load 
-0.15 -0.24, -0.06 -0.21, -0.09 
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Supplementary Table 2. Full outputs of Bayesian GLMMs of lifetime mating success 

(LMS) as a function of the total GERP load, the total SnpEff load and FROH. Shown are 

point estimates and credible intervals (95% and 80%) of the intercepts, standardised b 

estimates, standard deviations (SD) and zero-inflation factors. For the parameter ‘core versus 

non-core’, the b estimates of the non-core males relative to the core males are shown. Because 

all of the non-genomic terms are identical across the LMS models, we only report the full 

model outputs of these exemplary models in order to avoid redundancy.  The full outputs of all 

of the other models can be found in the github repository (see the data availability statement 

for details). 

Model Parameter Median 
95% CI  

(lower, upper) 

80% CI  

(lower, upper) 

To
ta

l G
ER

P 
lo

ad
 

Intercept 1.73 0.91, 2.36 1.31, 2.08 

b of the total GERP load -0.21 -0.27, -0.14 -0.25, -0.17 

b of core versus non-core  0.33 0.14, 0.51 0.20, 0.45 

SD intercept of lek site 0.59 0.29, 1.86 0.37, 1.14 

Zero inflation 0.49 0.42, 0.57 0.45, 0.54 

Intercept Kummunsuo -0.05 -0.68, 0.77 -0.41, 0.38 

Intercept Lehtosuo -0.43 -1.16, 0.33 -0.84, -0.02 

Intercept Nyrölä -0.19 -0.82, 0.61 -0.54, 0.26 

Intercept Saarisuo 0.79 0.17, 1.59 0.43, 1.23 

Intercept Teerisuo 0.10 -0.52, 0.93 -0.26, 0.51 

To
ta

l S
np

Ef
f l

oa
d 

Intercept 1.76 1.09, 2.34 1.4, 2.07 

b of the total SnpEff load -0.11 -0.18, -0.04 -0.16, -0.06 

b of core versus non-core 0.43 0.24, 0.61 0.30, 0.55 

SD intercept of lek site 0.52 0.25, 1.60 0.32, 1.00 

Zero inflation 0.50 0.42, 0.57 0.44, 0.54 

Intercept Kummunsuo -0.07 -0.67, 0.61 -0.40, 0.28 

Intercept Lehtosuo -0.27 -0.92, 0.40 -0.64, 0.11 

Intercept Nyrölä -0.25 -0.87, 0.41 -0.59, 0.10 

Intercept Saarisuo 0.69 0.10, 1.34 0.36, 1.07 

Intercept Teerisuo 

 
0.03 -0.56, 0.71 -0.31, 0.40 
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F R
O

H
 

Intercept 1.76 0.89, 2.36 1.39, 2.10 

b of FROH -0.14 -0.23, -0.05 -0.20, -0.07 

b of core versus non-core 0.38 0.19, 0.56 0.26, 0.50 

SD intercept of lek site 0.54 0.26, 1.70 0.32, 1.06 

Zero inflation 0.50 0.43, 0.57 0.45, 0.54 

Intercept Kummunsuo -0.07 -0.67, 0.77 -0.42, 0.32 

Intercept Lehtosuo -0.34 -1.02, 0.48 -0.72, 0.07 

Intercept Nyrölä -0.24 -0.87, 0.62 -0.60, 0.14 

Intercept Saarisuo 0.69 0.10, 1.60 0.36, 1.09 

Intercept Teerisuo 0.09 -0.56, 0.99 -0.26, 0.50 
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Supplementary Table 3. Outputs of Bayesian GLMMs of lifetime mating success stratified 

by genomic region for deleterious GERP mutations (GERP scores ³ 4).  Shown are point 

estimates, credible intervals (95% and 80%) and R2 values of the standardised b estimates of 

the total GERP load calculated per genomic region.  The conditional R2 refers to the variance 

explained by the fixed and random effects, whereas the marginal R2 refers to the variance 

explained only by the fixed effects. 

 

Region Median 
95% CI 

(lower, upper) 

80% CI 

(lower, upper) 

Conditional R2 

[95%CI] 

Marginal R2 

[95%CI] 

Promoter -0.18 -0.26, -0.09 -0.23, -0.13 0.07 [0.04, 0.11] 
0.01 [4.18e-5, 

0.04] 

TSS -0.27 -0.35, -0.20 -0.32, -0.22 0.07 [0.04, 0.11] 
0.03 [1.00e-3, 

0.07] 

Intron -0.29 -0.37, -0.21 -0.35, -0.23 0.06 [0.04, 0.09] 
0.03 [2.0e-3, 

0.06] 

Exon 0.23 0.15, 0.31 0.18, 0.29 0.07 [0.04, 0.11] 
0.02 [3.00e-4, 

0.05] 
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Supplementary Table 4. Outputs of Bayesian GLMMs of lifetime mating success stratified 

by genomic region for high impact SnpEff mutations. Shown are point estimates, credible 

intervals (95% and 80%) and R2 values of the standardised b estimates of the total SnpEff load 

calculated per genomic region.  The conditional R2 refers to the variance explained by the fixed 

and random effects, whereas the marginal R2 refers to the variance explained only by the fixed 

effects. 

 

Region Median 
95% CI 

(lower, upper) 

80% CI 

(lower, upper) 

Conditional R2 

[95%CI] 

Marginal R2 

[95%CI] 

Promoter -0.26 -0.34, -0.18 -0.31, -0.20 0.06 [0.04, 0.10] 
0.02 [1.00e-3, 

0.06] 

TSS -0.04 -0.12, 0.04 -0.09, 0.01 0.05 [0.03, 0.09] 
0.05 [1.56e-5, 

0.02] 

Intron -0.08 -0.15, 0.01 -0.13, -0.02 0.05 [0.03, 0.08] 
0.01 [8,93e-5, 

0.03] 

Exon -0.06 -0.20, -0.03 -0.17, -0.06 0.05 [0.03, 0.08] 
0.01 [6.60-6, 

0.03] 
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Supplementary Table 5. List of GO terms hypothesized to be important for male reproductive success in black grouse. For each GO term, 1 

we provide its description from AmiGO63 and the rationale for why deleterious mutations in genes associated with this term may impact male 2 

mating success in black grouse. 3 

GO term GO Accession Description Rationale  Hypothesis 

Androgen 
metabolic 
process 

GO:0008209 

The chemical reactions and 
pathways involving 
androgens, C19 steroid 
hormones that can stimulate 
the development of male 
sexual characteristics. 

Testosterone, an androgen, strongly 
correlates with lek centrality, red eye 
comb size29, and mating success28 in 
male black grouse. 

Deleterious mutations that reduce 
androgen production will be 
detrimental to male LMS. 

Cellular 
respiration GO:0045333 

The enzymatic release of 
energy from inorganic and 
organic compounds 
(especially carbohydrates and 
fats) which either requires 
oxygen (aerobic respiration) 
or does not (anaerobic 
respiration). 

Lekking behaviour is energetically 
costly30 and efficient cellular 
respiration may be important for 
sustaining such demanding behaviour.  

Deleterious mutations that affect the 
efficiency of cellular respiration will 
be detrimental to male LMS. 

Developmental 
growth GO:0048589 

The increase in size or mass 
of an entire organism, a part 
of an organism or a cell, 
where the increase in size or 
mass has the specific outcome 
of the progression of the 
organism over time from one 
condition to another. 

Body mass in Galliformes is positively 
correlated with the growth of legs, 
wings and the sternum throughout 
development64. Body mass in black 
grouse is a predictor of chick31 and 
yearling survival31 and correlates with 
yearling territoriality30.  

Deleterious mutations that reduce 
developmental growth will be 
detrimental to male LMS. 
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Immune 
response GO:0006955 

Any immune system process 
that functions in the calibrated 
response of an organism to a 
potential internal or invasive 
threat. 

Sexual traits are expected to be honest 
signals of quality due to the 
impairment of immune function 
associated with elevated testosterone 
levels25,26. Indeed, stabilizing selection 
acts on immunity in black grouse 
males and has consequences for sexual 
trait expression65.  

Deleterious mutations that cause a 
suboptimal immune response will be 
detrimental to male LMS. 

Muscle tissue 
development 

GO:0060537 

The progression of muscle 
tissue over time, from its 
initial formation to its mature 
state. Muscle tissue is a 
contractile tissue made up of 
actin and myosin fibers. 

Individuals with greater glycogen 
storage in muscles (e.g. due to greater 
muscle mass) may be able to maintain 
higher display rates and store more 
energy32,33. Higher display rates 
increase black grouse reproductive 
success66,67.  

Deleterious mutations that impact 
muscle synthesis and maintenance will 
be detrimental to male LMS. 

Response to 
oxidative 
stress 

GO:0006979 

Any process that results in a 
change in state or activity of a 
cell or an organism (in terms 
of movement, secretion, 
enzyme production, gene 
expression, etc.) as a result of 
oxidative stress, a state often 
resulting from exposure to 
high levels of reactive oxygen 
species, e.g. superoxide 
anions, hydrogen peroxide 
(H2O2), and hydroxyl 
radicals. 

Oxidative stress can affect investment 
in growth and/or sexual traits68, 
especially the expression of carotenoid 
and melanin-based ornamental traits27. 

Deleterious mutations that impact 
susceptibility to oxidative stress will 
be detrimental to male LMS. 

4 
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Supplementary Table 6. Outputs of Bayesian GLMMs of lifetime mating success stratified 5 

by genomic region and GO term for deleterious GERP mutations (GERP scores ³ 4). 6 

Shown are point estimates and credible intervals (95% and 80%) of the standardised b estimates 7 

of the total GERP load calculated separately for each GO term and stratified by genomic region 8 

(promoters, introns and exons).  9 

Genomic 

region 
GO term Median 

95% CI (lower, 

upper) 

80% CI (lower, 

upper) 

Pr
om

ot
er

s  

Androgen metabolism -0.33 -0.40, -0.25 -0.38, -0.28 

Cellular respiration -0.25 -0.34, -0.16 -0.30, -0.19 

Developmental growth -0.22 -0.30, -0.15 -0.27, -0.17 

Immune response -0.23 -0.30, -0.15 -0.28, -0.18 

Muscle tissue 

development  
-0.09 -0.17, -0.01 -0.14, -0.04 

Response to oxidative 

stress 
-0.11 -0.19, -0.02 -0.16, -0.05 

In
tro

ns
 

Androgen metabolism 0.41 0.32, 0.49 0.35, 0.46 

Cellular respiration 0.33 0.23, 0.43 0.27, 0.40 

Developmental growth 0.09 1.46e-3, 0.18 0.03, 0.15 

Immune response -0.29 -0.38, -0.21 -0.35, -0.24 

Muscle tissue 

development  
0.08 0.01, 0.15 0.03, 0.13 

Response to oxidative 

stress 
-0.03 -0.12, 0.06 -0.09, 0.03 

Ex
on

s 

Androgen metabolism -0.17 -0.25, -0.10 -0.23, -0.12 

Cellular respiration 0.01 -0.06, 0.09 -0.03, 0.07 

Developmental growth 0.05 -0.04, 0.13 -0.01, 0.10 

Immune response 0.14 0.06, 0.23 0.08, 0.20 

Muscle tissue 

development  
-0.02 -0.10, 0.07 -0.07, 0.04 

Response to oxidative 

stress 
-0.17 -0.25, -0.09 -0.22, -0.11 

 10 



 22 

Supplementary Table 7. Outputs of Bayesian GLMMs of lifetime mating success stratified 11 

by genomic region and GO term for high impact SnpEff mutations. Shown are point 12 

estimates and credible intervals (95% and 80%) of the standardised b estimates of the total 13 

SnpEff load calculated separately for each GO term and stratified by genomic region. 14 

Gene 

region 
GO term Median 

95% CI 

(lower, upper) 

80% CI 

(lower, upper) 

Pr
om

ot
er

s  

Cellular respiration 8.54e-5 -0.09, 0.09 -0.06, 0.06 

Developmental growth -0.05 -0.14, 0.03 -0.11, 2.73e-3 

Immune response -0.25 -0.34, -0.17 -0.31, -0.20 

Muscle tissue 

development  
0.05 -0.03, 0.13 1.82e-4, 0.10 

Response to oxidative 

stress 
0.11 0.03, 0.19 0.06, 0.16 

In
tro

ns
 

Cellular respiration 0.09 0.02, 0.17 0.04, 0.14 

Developmental growth 0.29 0.20, 0.38 0.23, 0.35 

Immune response -0.08 -0.15, -3.40-3 -0.13, -0.03 

Muscle tissue 

development  
0.20 0.11, 0.29 0.14, 0.26 

Response to oxidative 

stress 
0.37 0.28, 0.45 0.31, 0.42 

Ex
on

s 

Cellular respiration 0.19 0.10, 0.28 0.13, 0.25 

Developmental growth -0.02 -0.10, 0.06 -0.07, 0.03 

Immune response -0.14 -0.23, -0.05 -0.20, -0.08 

Muscle tissue 

development  
0.01 -0.07, 0.08 -0.04, 0.06 

Response to oxidative 

stress 
-0.07 -0.15, 0.02 -0.12, -0.02 

 15 

  16 
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Supplementary Table 8. Outputs of Bayesian GLMMs of annual mating success. Shown 17 

are point estimates, credible intervals (95% and 80%) and R2 of the standardised b estimates of 18 

the six sexual traits, the total load, and age category. For the parameter ‘age category’, the b 19 

estimates of yearlings relative to adults are shown.  The conditional R2 refers to the variance 20 

explained by the fixed and random effects, whereas the marginal R2 refers to the variance 21 

explained only by the fixed effects. 22 

 23 

 24 

Approach Predictor Median 

95% CI 

(lower, 

upper) 

80% CI 

(lower, 

upper) 

Conditional 

R2 [95%CI] 

Marginal 

R2 [95%CI] 

G
ER

P  

Lyre size 0.31 -0.07, 
0.69 0.07, 0.57 

0.55 [0.40, 
0.69] 

0.11 [0.02, 
0.26] 

Eye comb 
size 0.13 -0.21, 

0.48 
-0.10, 
0.35 

Blue 
chroma 0.15 -0.05, 

0.36 0.01, 0.29 

Attendance 1.32 0.71, 2.01 0.91, 1.74 
Fighting 
rate -0.06 -0.33, 

0.21 
-0.24, 
0.11 

Centrality -0.59 -0.93, -
0.23 

-0.81, -
0.36 

Total load -0.12 -0.38, 
0.11 

-0.28, -
0.03 

Age 
category  -0.17 -1.09, 

0.74 
-0.78, 
0.42 

Sn
pE

ff
 

Lyre size 0.33 -0.08, 
0.72 0.07, 0.58 

0.55 [0.41, 
0.68] 

0.10 [0.02, 
0.25] 

Eye comb 
size 0.14 -0.21, 

0.49 
-0.09, 
0.37 

Blue 
chroma 0.15 -0.06, 

0.36 0.02, 0.29 

Attendance 1.32 0.72, 1.94 0.92, 1.73 
Fighting 
rate -0.06 -0.32, 

0.20 
-0.23, 
0.11 

Centrality -0.57 -0.94, -
0.22 

-0.82, -
0.34 

Total load -0.11 -0.38, 
0.16 

-0.27, 
0.06 

Age 
category  -0.15 -1.04, 

0.79 
-0.73, 
0.45 
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Supplementary Table 9. Outputs of Bayesian GLMMs of the six sexual traits. Shown are 25 

point estimates, credible intervals (95% and 80%) and R2 values of the standardised b estimates 26 

of total GERP load and age category. One model was constructed for each of the sexual traits 27 

(see Methods for details). For the parameter ‘age category’, the b estimates of yearlings relative 28 

to adults are shown.  The conditional R2 refers to the variance explained by the fixed and 29 

random effects, whereas the marginal R2 refers to the variance explained only by the fixed 30 

effects. 31 

 32 

  33 

Response Predictor Median 

95% CI 

(lower, 

upper) 

80% CI 

(lower, 

upper) 

Conditional R2 

[95%CI] 

Marginal R2 

[95%CI] 

Ly
re

 si
ze

 Total 
GERP load -0.03 -0.10, 0.04 -0.07, 0.02 

0.88 [0.86, 0.89] 0.74 [0.72, 
0.75] Age 

category -1.77 -1.86, -1.68 -1.82, -1.72 

Ey
e 

co
m

b 
si

ze
 Total 

GERP load -3.3e-3 -0.09, 0.09 -0.06, 0.05 
0.57 [0.49, 0.63] 0.40 [0.34, 

0.45] Age 
category -1.31 -1.47, -1.16 -1.41, -1.21 

B
lu

e 
ch

ro
m

a Total 
GERP load -0.03 -0.13, 0.08 -0.10, 0.04 

0.42 [0.32, 0.50] 0.10 [0.06, 
0.15] Age 

category -0.67 -0.85, -0.49 -0.79, -0.55 

A
tte

nd
an

ce
 

Total 
GERP load -0.10 -0.19, -0.01 -0.16, -0.05 

0.42 [0.33, 0.50] 0.33 [0.27, 
0.39] Age 

category -1.15 -1.31, -0.99 -1.26, -1.05 

Fi
gh

tin
g 

ra
te

 Total 
GERP load 0.01 -0.09, 0.12 -0.06, 0.08 

0.18 [0.09, 0.30] 0.07 [0.02, 
0.12] Age 

category -0.60 -0.83, -0.37 -0.75, -0.44 

C
en

tra
lit

y Total 
GERP load 0.04 -0.09, 0.16 -0.04, 0.12 

0.44 [0.32, 0.55] 0.08 [0.03, 
0.13] Age 

category 0.62 0.40, 0.84 0.48, 0.76 
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Supplementary Table 10. Outputs of Bayesian GLMMs of the six sexual traits. Shown are 34 

point estimates, credible intervals (95% and 80%) and R2 values of the standardised b estimates 35 

of total SnpEff load and age category. One model was constructed for each of the sexual traits 36 

(see Methods for details). For the parameter ‘age category’, the b estimates of yearlings relative 37 

to adults are shown. The conditional R2 refers to the variance explained by the fixed and random 38 

effects, whereas the marginal R2 refers to the variance explained only by the fixed effects. 39 

 40 

 41 

  42 

Response Predictor Median 

95% CI 

(lower, 

upper) 

80% CI 

(lower, 

upper) 

Conditional 

R2 [95%CI] 

Marginal 

R2 

[95%CI] 

Ly
re

 si
ze

 Total 
SnpEff 
load 

0.04 -0.04, 0.10 -0.01, 0.08 0.88 [0.86, 
0.89] 

0.73 [0.72, 
0.75] Age 

category -1.77 -1.84, -
1.69 

-1.82, -
1.72 

Ey
e 

co
m

b 
si

ze
 

Total  
SnpEff 
load 

-0.01 -0.10, 0.07 -0.07, 0.04 0.57 [0.50, 
0.63] 

0.40 [0.35, 
0.45] Age 

category -1.31 -1.46, -
1.15 

-1.41, -
1.21 

B
lu

e 
ch

ro
m

a Total  
SnpEff 
load 

-0.07 -0.17, 0.04 -0.13, 
9.80e-4 0.42 [0.33, 

0.50] 
0.11 [0.06, 
0.15] Age 

category -0.67 -0.84, -
0.49 

-0.79, -
0.55 

A
tte

nd
an

ce
 Total  

SnpEff 
load 

-0.03 -0.11, 0.06 -0.08, 0.03 0.43 [0.34, 
0.51] 

0.32 [0.26, 
0.38] Age 

category -0.17 -1.32, -
0.99 

-1.27, -
1.06 

Fi
gh

tin
g 

ra
te

 Total  
SnpEff 
load 

-0.02 -0.12, 0.08 -0.09, 0.04 0.18 [0.09, 
0.29] 

0.07 [0.02, 
0.12] Age 

category -0.58 -0.82, -
0.36 

-0.74, -
0.43 

C
en

tra
lit

y Total  
SnpEff 
load 

-0.01 -0.14, 0.11 -0.09, 0.07 0.45 [0.32, 
0.55] 

0.08 [0.03, 
0.12] Age 

category 0.62 0.40, 0.84 0.48, 0.76 
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Supplementary Table 11. Outputs of Bayesian GLMMs of the direct and indirect effects 43 

of the total load on annual mating success (AMS). Shown are point estimates and credible 44 

intervals (95% and 80%) of the standardised b estimates of the direct and indirect effects of the 45 

total load on AMS through the six sexual traits calculated using the point method (see Methods 46 

for details).  The model outputs for the regressions used to calculate the indirect effects are 47 

shown in Supplementary Tables 9–11. The direct effect of the total GERP load on AMS was 48 

estimated while correcting for all of the sexual traits.  49 

  50 

Approach Effect Mediator Median 
95% CI 

(lower, upper) 

80% CI  

(lower, upper) 

G
ER

P  

Direct – -0.13 -0.36, 0.11 -0.29, 0.03 

Indirect 

Lyre size -0.01 -0.04, 0.01 -0.03, 0.01 

Eye comb size 0.00 -0.02, 0.02 -0.01, 0.01 

Blue chroma 0.00 -0.03, 0.01 -0.02, 0.01 

Attendance -0.13 -0.28, -0.01 -0.22, -0.05 

Fighting rate 0.00 -0.02, 0.02 -0.01, 0.01 

Centrality -0.02 -0.11, 0.05 -0.07, 0.02 

Sn
pE

ff
 

Direct – -0.11 -0.38, 0.16 -0.27, 0.06 

Indirect 

Lyre size 0.01 -0.01, 0.05 0.00, 0.03 

Eye comb size 0.00 -0.03, 0.02 -0.01, 0.01 

Blue chroma -0.01 -0.04, 0.01 -0.03, 0.00 

Attendance -0.03 -0.16, 0.09 -0.11, 0.04 

Fighting rate 0.00 -0.01, 0.02 -0.01, 0.01 

Centrality 0.01 -0.06, 0.09 -0.04, 0.06 
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Supplementary Table 12. Population differentiation among lekking sites. Shown above the 51 

diagonal are mean FST values, while the corresponding p-values are shown below the diagonal 52 

for each pairwise comparison. 53 

 54 

Lekking site Kummunsoa Lehtusuo Nyrölä Saarisuo Teerisuo 

Kummunsoa – 0.012 0.017 0.014 0.016 

Lehtusuo 0.512 – 0.014 0.009 0.009 

Nyrölä 0.527 0.457 – 0.017 0.017 

Saarisuo 0.500 0.524 0.501 – 0.013 

Teerisuo 0.488 0.506 0.536 0.527 – 

 55 

  56 
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Supplementary Table 13. Outputs of Bayesian linear models testing for differences in the 57 

total GERP and SnpEff loads and inbreeding (FROH) among leks. Shown are the median b 58 

estimates and their credible intervals (95% and 80%). Lekking site was used as a predictor, 59 

where Kummunsuo was the reference lek, and the response variable was z-transformed. Bold 60 

numbers indicate that the CIs do not overlap zero. 61 

 62 

Response Lekking site 
Median 

b estimate 
95% CI 80% CI 

To
ta

l G
ER

P 
lo

ad
 

Lehtusuo -1.62 -0.61, 0.27 -0.43, 0.12 

Nyrölä -0.10 -0.47, 0.26 -0.34, 0.13 

Saarisuo -0.11 -0.53, 0.34 -0.40, 0.19 

Teerisuo 0.10 -0.38, 0.59 -0.23, 0.44 

To
ta

l S
np

Ef
f 

lo
ad

 

Lehtusuo -0.08 -0.17, 0.33 -0.09, 0.24 

Nyrölä -0.03 -0.47, 0.41 -0.32, 0.25 

Saarisuo -0.05 -0.41, 0.32 -0.30, 0.19 

Teerisuo -0.17 -0.65, 0.33 -0.49, 0.16 

F R
O

H
 

Lehtusuo -0.58 -0.99, -0.16 -0.85, -0.30 

Nyrölä -0.10 -0.44, 0.26 -0.33, 0.12 

Saarisuo -0.27 -0.71, 0.16 -0.55, 0.02 

Teerisuo -0.09 -0.55, 0.39 -0.39, 0.21 

 63 

  64 
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Supplementary Table 14. Summary statistics of the B10k and the scaffolded black grouse 65 

reference genomes. N50 and N90 are the length in base pairs of the shortest contig whose 66 

length sum makes up 50% and 90% of the total genome size, respectively. L50 and L90 are the 67 

count of the smallest number of contigs whose length sum makes up 50% and 90% of the total 68 

genome size, respectively. 69 

 70 

Statistic B10k genome Scaffolded genome 

Total length (bp) 1,002,957,384 1,003,452,484 

N50 5,658,217 69,550,540 

L50 49 5 

N90 500,392 12,704,504 

L90 267 18 

Number of scaffolds 26,930 21,979 

Number of scaffolds > 1kbp 10,613 5,662 

Largest scaffold (bp) 32,946,576 189,864,486 

Number of gaps 10,955 15,906 

 71 

  72 
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Supplementary Table 15. Summary of the number of genes and mutations identified for 73 

each GO term. Shown are the number of genes associated with each GO term that contain 74 

deleterious mutations, separately for GERP and SnpEff. Also shown are the total number of 75 

deleterious mutations within those genes stratified across genomic regions (promoters, introns, 76 

exons) for each GO term separately for GERP and SnpEff. Because there were too few high 77 

impact SnpEff mutations in genes associated with androgen metabolic processes, we did not 78 

calculate the total load based on this subset of mutations. 79 

GO term 

GERP SnpEff 

genes promoters introns exons genes promoters introns exons 

Androgen 
metabolic 
process 

8 9 56 14 1 1 0 1 

Cellular 
respiration 111 84 542 231 18 7 8 15 

Developmental 
growth 504 563 3,920 1,505 76 32 49 56 

Immune 
response 635 12,674 62,605 3,460 102 1,554 1,504 2,764 

Muscle tissue 
development  304 384 2,963 932 43 17 26 38 

Response to 
oxidative 
stress 

340 320 2,126 907 61 25 26 47 

 80 

  81 



 31 

References 82 

 83 

1. Höglund, J., Alatalo, R. V., Lundberg, A., RintamÎki, P. T. & Lindell, J. Microsatellite 84 

markers reveal the potential for kin selection on black grouse leks. Proc. R. Soc. Lond. B 85 

Biol. Sci. 266, 813–816 (1999). 86 

2. Chen, R. S. et al. Effects of hunting on genetic diversity, inbreeding and dispersal in 87 

Finnish black grouse ( Lyrurus tetrix ). Evol. Appl. 16, 625–637 (2023). 88 

3. Corrales, C. & Höglund, J. Maintenance of gene flow by female-biased dispersal of Black 89 

Grouse Tetrao tetrix in northern Sweden. J. Ornithol. 153, 1127–1139 (2012). 90 

4. Caizergues, A. & Ellison, L. N. Natal dispersal and its consequences in Black Grouse 91 

Tetrao tetrix: Natal dispersal and its consequences in Black Grouse. Ibis 144, 478–487 92 

(2002). 93 

5. Warren, P. K. & Baines, D. Dispersal, survival and causes of mortality in black grouse 94 

Tetrao tetrix in northern England. Wildl. Biol. 8, 91–97 (2002). 95 

6. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. 96 

Bioinformatics 26, 2867–2873 (2010). 97 

7. Lebigre, C., Alatalo, R. V., Forss, H. E. & Siitari, H. Low levels of relatedness on black 98 

grouse leks despite male philopatry. Mol. Ecol. 17, 4512–4521 (2008). 99 

8. Lebigre, C., Alatalo, R. V. & Siitari, H. Female-biased dispersal alone can reduce the 100 

occurrence of inbreeding in black grouse ( Tetrao tetrix ). Mol. Ecol. 19, 1929–1939 101 

(2010). 102 

9. Soulsbury, C. D., Alatalo, R. V., Lebigre, C. & Siitari, H. Restrictive mate choice criteria 103 

cause age-specific inbreeding in female black grouse, Tetrao tetrix. Anim. Behav. 83, 104 

1497–1503 (2012). 105 

10. Davydov, E. V. et al. Identifying a High Fraction of the Human Genome to be under 106 

Selective Constraint Using GERP++. PLoS Comput. Biol. 6, e1001025 (2010). 107 



 32 

11. Cingolani, P. et al. A program for annotating and predicting the effects of single 108 

nucleotide polymorphisms, SnpEff. Fly (Austin) 6, 80–92 (2012). 109 

12. Booy, G., Hendriks, R. J. J., Smulders, M. J. M., Van Groenendael, J. M. & Vosman, B. 110 

Genetic Diversity and the Survival of Populations. Plant Biol. 2, 379–395 (2000). 111 

13. Hedrick, P. W. & Garcia-Dorado, A. Understanding Inbreeding Depression, Purging, and 112 

Genetic Rescue. Trends Ecol. Evol. 31, 940–952 (2016). 113 

14. Mathur, S., Tomeček, J. M., Tarango-Arámbula, L. A., Perez, R. M. & DeWoody, J. A. An 114 

evolutionary perspective on genetic load in small, isolated populations as informed by 115 

whole genome resequencing and forward-time simulations. Evolution 77, 690–704 116 

(2023). 117 

15. The 1000 Genomes Project Consortium. A map of human genome variation from 118 

population-scale sequencing. Nature 467, 1061–1073 (2010). 119 

16. Sims, D., Sudbery, I., Ilott, N. E., Heger, A. & Ponting, C. P. Sequencing depth and 120 

coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121–132 (2014). 121 

17. Smeds, L. & Ellegren, H. From high masked to high realized genetic load in inbred 122 

Scandinavian wolves. Mol. Ecol. 32, 1567–1580 (2023). 123 

18. Huber, C. D., Kim, B. Y. & Lohmueller, K. E. Population genetic models of GERP scores 124 

suggest pervasive turnover of constrained sites across mammalian evolution. PLOS 125 

Genet. 16, e1008827 (2020). 126 

19. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. 127 

Nat. Rev. Genet. 8, 610–618 (2007). 128 

20. Agarwal, I., Fuller, Z. L., Myers, S. R. & Przeworski, M. Relating pathogenic loss-of-129 

function mutations in humans to their evolutionary fitness costs. eLife 12, e83172 (2023). 130 



 33 

21. Pagel, K. A. et al. When loss-of-function is loss of function: assessing mutational 131 

signatures and impact of loss-of-function genetic variants. Bioinformatics 33, i389–i398 132 

(2017). 133 

22. Xu, Y.-C. & Guo, Y.-L. Less Is More, Natural Loss-of-Function Mutation Is a Strategy for 134 

Adaptation. Plant Commun. 1, 100103 (2020). 135 

23. Klim, J., Zielenkiewicz, U. & Kaczanowski, S. Loss-of-function mutations are main 136 

drivers of adaptations during short-term evolution. Sci. Rep. 14, 7128 (2024). 137 

24. MacArthur, D. G. et al. A Systematic Survey of Loss-of-Function Variants in Human 138 

Protein-Coding Genes. Science 335, 823–828 (2012). 139 

25. Zahavi, A. & Zahavi, A. The Handicap Principle: A Missing Piece of Darwin’s Puzzle. 140 

(Oxford University Press, 1999). 141 

26. Kurtz, J. & Sauer, K. P. The immunocompetence handicap hypothesis: testing the genetic 142 

predictions. Proc. R. Soc. Lond. B Biol. Sci. 266, 2515–2522 (1999). 143 

27. Costantini, D. The Oxidative Costs of a Colourful Life. in The Role of Organismal 144 

Oxidative Stress in the Ecology and Life-History Evolution of Animals 287–322 (Springer 145 

Nature Switzerland, Cham, 2024). doi:10.1007/978-3-031-65183-0_8. 146 

28. Testosterone and male mating success on the black grouse leks. Proc. R. Soc. Lond. B 147 

Biol. Sci. 263, 1697–1702 (1996). 148 

29. Rintamaki, P. T. Combs and sexual selection in black grouse (Tetrao tetrix). Behav. Ecol. 149 

11, 465–471 (2000). 150 

30. Kervinen, M., Alatalo, R. V., Lebigre, C., Siitari, H. & Soulsbury, C. D. Determinants of 151 

yearling male lekking effort and mating success in black grouse (Tetrao tetrix). Behav. 152 

Ecol. 23, 1209–1217 (2012). 153 



 34 

31. Ludwig, G. X., Alatalo, R. V., Helle, P. & Siitari, H. Individual and Environmental 154 

Determinants of Daily Black Grouse Nest Survival Rates at Variable Predator Densities. 155 

Ann. Zool. Fenn. 47, 387–397 (2010). 156 

32. Briffa, M. & Sneddon, L. U. Physiological constraints on contest behaviour. Funct. Ecol. 157 

21, 627–637 (2007). 158 

33. Guderley, H. & Couture, P. Stickleback Fights: Why Do Winners Win? Influence of 159 

Metabolic and Morphometric Parameters. Physiol. Biochem. Zool. 78, 173–181 (2005). 160 

34. Zhu, M. & Zhao, S. Candidate Gene Identification Approach: Progress and Challenges. 161 

Int. J. Biol. Sci. 420–427 (2007) doi:10.7150/ijbs.3.420. 162 

35. Barreiro, L. B. & Quintana-Murci, L. From evolutionary genetics to human immunology: 163 

how selection shapes host defence genes. Nat. Rev. Genet. 11, 17–30 (2010). 164 

36. Gilbert, R. & Uetz, G. W. Courtship and male ornaments as honest indicators of immune 165 

function. Anim. Behav. 117, 97–103 (2016). 166 

37. De La Peña, E. et al. Immune challenge of mating effort: steroid hormone profile, dark 167 

ventral patch and parasite burden in relation to intrasexual competition in male Iberian 168 

red deer. Integr. Zool. 15, 262–275 (2020). 169 

38. Moller, A. P., Christe, P. & Lux, E. Parasitism, Host Immune Function, and Sexual 170 

Selection. Q. Rev. Biol. 74, 3–20 (1999). 171 

39. Mandelker, L. Oxidative stress, free radicals, and cellular damage. Stud. Vet. Med. 1–17 172 

(2011). 173 

40. Zhang, G. Bird sequencing project takes off. Nature 522, 34–34 (2015). 174 

41. Feng, S., Stiller, J. & Deng. Dense sampling of bird diversity increases power of 175 

comparative genomics. Nature 587, 252–257 (2020). 176 

42. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de 177 

novo assembler. GigaScience 1, 18 (2012). 178 



 35 

43. Xu, M. et al. TGS-GapCloser: A fast and accurate gap closer for large genomes with low 179 

coverage of error-prone long reads. GigaScience 9, giaa094 (2020). 180 

44. Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for 181 

long-range linkage. Genome Res. 26, 342–350 (2016). 182 

45. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 183 

(2009). 184 

46. Smit, A., Hubley, R. & Green, P. RepeatModeler Open. (2008). 185 

47. Smit, A., Hubley, R. & Green, P. RepeatMasker Open. (2013). 186 

48. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically 187 

mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 188 

(2008). 189 

49. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004). 190 

50. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 191 

(2013). 192 

51. Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging 193 

model organism genomes. Genome Res. 18, 188–196 (2008). 194 

52. Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection 195 

and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 196 

(2021). 197 

53. Purcell, S. et al. PLINK: A Tool Set for Whole-Genome Association and Population-198 

Based Linkage Analyses. Am. J. Hum. Genet. 81, 559–575 (2007). 199 

54. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019). 200 

55. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 201 

(2011). 202 

56. Canty, A. & Ripley, B. D. boot: Bootstrap R (S-Plus) functions. (2021). 203 



 36 

57. Humble, E., Paijmans, A. J., Forcada, J. & Hoffman, J. I. An 85K SNP Array Uncovers 204 

Inbreeding and Cryptic Relatedness in an Antarctic Fur Seal Breeding Colony. G3 205 

GenesGenomesGenetics 10, 2787–2799 (2020). 206 

58. Korneliussen, T. S. & Moltke, I. NgsRelate: a software tool for estimating pairwise 207 

relatedness from next-generation sequencing data. Bioinformatics btv509 (2015) 208 

doi:10.1093/bioinformatics/btv509. 209 

59. Waples, R. K., Albrechtsen, A. & Moltke, I. Allele frequency‐free inference of close 210 

familial relationships from genotypes or low‐depth sequencing data. Mol. Ecol. 28, 35–48 211 

(2019). 212 

60. Brooks, Mollie, E. et al. glmmTMB Balances Speed and Flexibility Among Packages for 213 

Zero-inflated Generalized Linear Mixed Modeling. R J. 9, 378 (2017). 214 

61. Young, D. S. tolerance : An R Package for Estimating Tolerance Intervals. J. Stat. Softw. 215 

36, (2010). 216 

62. Carbon, S. & Mungall, C. Gene Ontology Data Archive. Zenodo 217 

https://doi.org/10.5281/ZENODO.10536401 (2024). 218 

63. Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinformatics 219 

25, 288–289 (2009). 220 

64. Aourir, M., Znari, M., El Abbassi, A. & Radi, M. Growth Patterns and Developmental 221 

Strategy in the Black-Bellied Sandgrouse Pterocles orientalis. Ardeola 63, 311–327 222 

(2016). 223 

65. Soulsbury, C. D., Siitari, H. & Lebigre, C. Stabilising selection on immune response in 224 

male black grouse Lyrurus tetrix. Oecologia 186, 405–414 (2018). 225 

66. Hämäläinen, A., Alatalo, R. V., Lebigre, C., Siitari, H. & Soulsbury, C. D. Fighting 226 

behaviour as a correlate of male mating success in black grouse  Tetrao tetrix . Behav. 227 

Ecol. Sociobiol. 66, 1577–1586 (2012). 228 



 37 

67. Rintamäki, P. T., Höglund, J., Alatalo, R. V. & Lundberg, A. Correlates of male mating 229 

success on black grouse (Tetrao tetrix L.) leks. Ann. Zool. Fenn. 38, 99–109 (2001). 230 

68. Royle, N. J., Orledge, J. M. & Blount, J. D. Early Life‐History Effects, Oxidative Stress, 231 

and the Evolution and Expression of Animal Signals. in Animal Signaling and Function 232 

(eds. J. Irschick, D., Briffa, M. & Podos, J.) 11–46 (Wiley, 2015). 233 

doi:10.1002/9781118966624.ch2. 234 

 235 




