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Supplementary Results and Discussion

Population and relatedness structure

To provide context for our study, we first characterised the genetic structure of the black grouse
population and tested for the presence of close kin both within and among the lekking sites
(Supplementary Fig. 1a). Genetic differentiation was overall rather weak, with no pairwise
comparisons of lekking sites yielding Fsr values that differed significantly from zero
(Supplementary Table 12). However, there was a hint of population structure along a west-east
axis, with KUM and NYR being the most differentiated lekking sites (Supplementary Fig. 1b).
These findings are consistent with previous studies revealing weak to moderate population
structure among black grouse leks'™ and reflect the interplay between female dispersal and

male site fidelity!*>

. Accordingly, no significant differences were found among the lekking
sites in individual mutation loads and only one pair of lekking sites differed significantly in

Frou (Supplementary Table 13).

To characterise the relatedness structure of our dataset, we calculated R0, R1 and KING-robust
kinship values for all pairwise combinations of individuals and visualised the results by plotting
R1 against KING-robust kinship (Supplementary Fig. 1c). Pairs of individuals were assigned
to specific relatedness categories by computing Z scores and comparing these with the
inference criteria of Manichaikul et al.>. Among the 17,949 pairwise comparisons, the majority
were unrelated pairs (17,483 = 97.4%), with only 466 pairs (2.6%) being identified as close
kin. The close kin pairs were comprised of 27 full siblings (5.8%), 60 parent-offspring pairs
(12.9%), 176 second-degree relatives (37.8%) and 203 third-degree relatives (43.6%). Out of
190 individuals, 104 had at least one first-degree relative (full sibling or parent-offspring) in
the population, 124 had at least one second-degree relative, and 143 had at least one third-
degree relative. The proportion of relatives sampled at the same lekking site was highest for
full siblings and lowest for third-degree relatives (Supplementary Fig. 1d). The presence of
close male kin on black grouse leks has been described previously’ and arises due to strong

male philopatry!+3.

While the risk of inbreeding is reduced by female-biased dispersal®,
consanguineous matings may still occur as older females have a greater chance of mating with

philopatric male kin®.

Differences between GERP and SnpEff



The nearly two orders of magnitude difference in the absolute number of mutations identified
as deleterious by GERP (n = 413,489) and SnpEff (n = 5,341) can be attributed to conceptual
and methodological differences between the two approaches!®!!. SnpEff restricts its annotation
of high impact variants to genes, where mutations are more likely to affect transcripts and
protein products'!. By contrast, GERP scores are calculated across the entire genome,
including intergenic regions!'®. Furthermore, SnpEff evaluates the likely impact of mutations
on amino acid sequences'!, whereas GERP quantifies evolutionary conservation without regard
to a mutation’s functional effect on protein structure and function!®. While this disparity in the
number of identified mutations is therefore expected, it raises an important question: are both

approaches are equally effective at identifying mutations that reduce fitness?

Moreover, the absolute number of deleterious mutations identified in a population can be
influenced by numerous biological and methodological factors. Species- and population-
specific characteristics such as the mutation rate, effective population size, strength of

selection, inbreeding levels and purging directly affect the abundance of deleterious variants!'?

14 Methodological aspects including sample size, sequencing depth and read quality also

determine the number of reliably called SNPs!>16

, while downstream analytical choices such
as SNP filtering criteria and the choice of the GERP score threshold used to classify a mutation
as deleterious substantially affect the final count of predicted deleterious mutations. However,
standardising this threshold across species is difficult because the range of GERP scores is
determined by the phylogenetic tree used for GERP score computation!?. It is likely that these
and possibly other factors contribute to the high proportion of mutations annotated as
deleterious in the black grouse (5.9% of all SNPs) when compared to some!®!'* but not all'’

previous vertebrate studies.

We found a stronger negative effect of the total GERP load on LMS compared to the SnpEff
load, which may reflect the distinct properties of those mutations identified by each prediction
approach. High GERP scores are considered strong indicators of deleterious mutations under

purifying selection'®. By contrast, although mutations classified as high impact by SnpEff, such

19,20

as LOF mutations, are also expected to have negative effects on fitness'”’, some may instead

121723 might not necessarily be relevant to the trait in question!!, or their

be adaptive or neutra
phenotypic effects might not be as strong as expected due to alternative splicing or because the

function of the focal protein might be rescued by another protein®*.



Additionally, the effect sizes of the total GERP and SnpEff load may be influenced by the
differences in the number of mutations contributing to each load estimate. To investigate
whether the observed effect sizes of the total GERP load and the total SnpEff load are driven
by differences in the effect sizes of individual mutations or by differences in the number of
contributing mutations, we performed random sampling of equal-sized subsets of mutations as
described in the Supplementary Methods. First, we compared the effect sizes of the total GERP
load and the total SnpEff load after randomly sampling 5,000 subsets of 1,000 mutations for
both prediction approaches. The effect sizes of the total load on LMS were similar for GERP
and SnpEff (median S estimate = -0.05 and -0.11 respectively; Supplementary Fig 3a, b),
suggesting that the stronger association between the total GERP load and LMS in the full
dataset is mainly due to the larger number of identified mutations, which collectively provide

greater statistical power to detect an effect.

To compare the effect sizes of the four genomic regions (promoter, TSS, intron, exon), we
repeated our analyses using random subsets of 500 mutations per region. We found that the
effect sizes of the total load on LMS were substantially more negative for mutations with GERP
scores >4 in TSSs (median Sestimate =-0.21) and high impact SnpEff mutations in promotors
(median S estimate = -0.29) compared to mutations in other genomic regions (median f
estimates for GERP: promoters = -0.06; introns = -0.04, exons = 0.05; median f estimates for
SnpEff: TSSs = -0.06, introns = -0.06, exons = -0.07; Supplementary Fig 3c, d). This provides
further evidence for deleterious mutations in these critical regulatory regions having

disproportionately negative fitness effects.
Biological processes

While deleterious mutations could in principle affect fitness via diverse biological processes,
previous research has identified specific biological processes that are likely to be particularly
important for sexual signaling and sexual selection in black grouse and other animals 2°-28,
Based on this, we hypothesised that male reproductive success in black grouse would be
especially sensitive to mutations affecting androgen metabolism (including testosterone which
strongly correlates with sexual trait expression in black grouse?®??), cellular respiration (which
is crucial for energetically costly behaviours such as lekking?®), developmental growth (which

! and territory-holding ability in black grouse®®), immune function

predicts surviva
(hypothesized to link testosterone-dependent sexual traits to honest signaling?>2), muscle

tissue development (greater glycogen storage in muscles allows higher display rates in male



black grouse®>*?) and responses to oxidative stress (which influence carotenoid and melanin-
based sexual ornaments?’). For details of our hypotheses and rationale, see Supplementary table

5.

To test these hypotheses, we used gene ontology (GO) annotations to identify subsets of
deleterious mutations within genes associated with these six biological processes (see
Supplementary Methods and Supplementary Table 5 for details). We then computed the total
load for each GO term and prediction approach separately for promoters, introns and exons.
These values were then used as predictor variables in separate Bayesian GLMMs of LMS,
following the same model structure described above. This hypothesis-driven approach, akin to
a candidate gene framework?*, tests for associations between our six focal GO terms and male
reproductive success, but does not allow inference about other biological processes not

included in our a priori hypotheses.

Overall, while the effect of the total load on LMS varied in both direction and significance
depending on the GO term and genomic region, three distinct patterns emerged. First, GERP
mutations in promotor regions were consistently negatively associated with LMS across all GO
terms (Extended Data Fig. 5, Supplementary Table 6), reinforcing our earlier finding that
deleterious mutations in promoter regions tend to reduce fitness. Second, for androgen
metabolism, immune response and response to oxidative stress, GERP mutations in at least two
genomic regions were negatively associated with LMS (Extended Data Fig. 5, Supplementary
Table 6). Third, SnpEff mutations in immune-related genes had consistently negative effects
on LMS across all three genomic regions (Extended Data Fig 6, Supplementary Table 7). These
findings are consistent with the strong selective pressures exerted by pathogens on immune
genes®, the well-established links between sexual traits and immune function®®8, the

28,29

importance of androgens for sexual trait expression=*=” and the detrimental effects of oxidative

stress on numerous life-history traits®.

Supplementary Methods
Library preparation

Library preparation of the 190 whole genomic extracts was performed at the Beijing Genomics
Institute (BGI) using the BGI Optimal DNA Library Prep Kit (BGI — Shenzhen China).
Genomic DNA Fragments were size-selected using magnetic beads subjected to end repair to

generate blunt-ended DNA. A single adenosine was added to the 3’ ends via an A-tailing



reaction, followed by adapter ligation. The resulting libraries were PCR amplified and the
double stranded library products were denatured to generate single stranded library products.
A circularization reaction was then used to generate single stranded circularized DNA products,
while excess single stranded linear DNA was removed through digestion. The resulting single
stranded circularized libraries were amplified using phi29 and rolling circle amplification to
generate a DNA nanoball (DNB) that carries approximately 300 copies of the initial single-

stranded library molecules.
Reference genome

For this study, we scaffolded a black grouse reference genome assembled by the 10K Bird
Project (B10K)***!. The black grouse individual originated from Nordland, Norway and was
preserved at the Natural History Museum of Denmark. B10K constructed a single-tube long
fragment read co-barcoded (stLFR) library which was subsequently 100bp paired-end
sequenced on a DNBseq platform at the Beijing Genomics Institute (BGI). Raw reads with
missing data (>10%), low quality (>40% bases with Phred score <= 10) or below expected
insert sizes were excluded and PCR duplicates were filtered out using SOAPfilter2 v2.242,
GapCloser v1.12% was used to close gaps within scaffolds. The resulting B10K assembly had
a total length of 1,002,957,384 bp and consisted of 26,930 scaffolds with an N50 of 5,658,217
bp (see Supplementary Table 14 for details).

To improve contiguity, we scaffolded the B10K assembly using HiRise together with Cantata
Bio. They used 200 ml of blood to prepare an Omni-C library for genome scaffolding with
HiRise. First, chromatin in the nucleus was fixed with formaldehyde**. DNase I was then used
to extract and digest the chromatin, after which the ends were repaired and ligated to a
biotinylated bridge adapter. The DNA was subsequently purified and unligated fragments were
discarded. A library was then generated using NEBNext Ultra enzymes and Illumina-
compatible adapters. Using streptavidin beads, biotin-containing fragments were isolated and
the sequences were duplicated in a polymerase chain reaction (PCR). Prior to deep sequencing,
the B10K assembly was used to quality check the OmniC library. Finally, the sequencing was
performed using an Illumina HiSeqX platform with a target coverage of 30x and the resulting
reads were quality filtered (MQ > 50) and used to scaffold both pseudo-haplotypes with Cantata
Bio’s HiRise software**. The contiguity of the resulting reference genome was considerably
improved, with the scaffold N50 increasing over ten-fold to 69,550,540 (Supplementary Table
14). Lastly, we identified the scaffold corresponding to the Z chromosome by aligning the



chicken Z chromosome (NCBI RefSeq assembly GCF _016699485.2) to the black grouse
reference genome using BLAST v2.12.0%. We identified a long scaffold that showed 83%

identity to the chicken Z chromosome, which we assigned as the black grouse Z chromosome.

Genome annotation

To annotate the scaffolded reference genome, we generated transcriptomic data from an 11-14
day old black grouse embryo obtained from a captive breeding facility in the Netherlands. Total
RNA was extracted from a mixture of randomly selected embryo sections using the Qiagen
RNeasy Plus Kit. The extract was treated with DNase and the RNA was cleaned using AMPure
beads and the QIAGEN FastSelect HMR RNA depletion kit. The library was prepared by
Genewiz Multiomics & Synthesis Solutions using the NEBNext Ultra II RNA Library Prep Kit
and 150 bp paired-end sequenced on an Illumina NovaSeq6000 platform.

The genome annotation was performed by Cantata Bio using the resulting RNA sequencing
data together with publicly available RNA sequencing data (NCBI SRA Bioproject
SRP006680). Repeat families in the genome were identified de novo and classified using
RepeatModeler v2.0.1%. The output from RepeatModeler was then used to identify and mask
repeated segments in the genome annotation file using RepeatMasker v4.1.0*7. Two initial ab
initio gene models were trained with the coding sequences of the chicken (Gallus gallus),
Japanese quail (Coturnix japonmica), rock ptarmigan (Lagopus muta) and wild turkey
(Meleagris gallopavo) using AUGUSTUS v2.5.5* and SNAP v2006-07-28% respectively. The
AUGUSTUS predictions were optimised in six rounds. RNA-Seq reads were aligned to the
reference genome using STAR v2.7°° and intron hints were generated with the bam2hints tools
within AUGUSTUS. Subsequently, we used MAKER?!, SNAP and AUGUSTUS (with intron-
exon boundary hints provided from the RNA-Seq data) to predict genes in the repeat-masked
reference genome. To help guide the gene prediction process, Swiss-Prot peptide sequences
from the UniProt database were downloaded and used in combination with the protein
sequences from the avian species described above to generate peptide evidence in the Maker
pipeline. The final gene sets comprised only genes that were predicted by both SNAP and
AUGUSTUS. The quality of the predictions was assessed using AED scores generated for
predicted genes by MAKER. Genes were further characterised for their putative function by
performing a BLAST* search of the peptide sequences against the UniProt database. Transfer
RNAs were predicted using tRNAscan-SE v2.05%2.



Population structure and relatedness

We used principal component analysis (PCA) to characterise population genetic structure. For
this analysis, PLINK v1.90% was used to produce a stringently filtered SNP dataset from which
the following were excluded (i) strongly linked SNPs, where linkage disequilibrium (LD) was
computed in window sizes of 50 base pairs with shifts of five SNPs with a variance inflation
factor threshold of two (--indep 50 5 2); (ii) SNPs deviating significantly from Hardy-Weinberg
equilibrium (HWE) with an alpha level of 0.001 (--hwe 0.001); and (iii) SNPs with a minor
allele frequency (MAF) below 0.01 (--maf 0.01). The PCA was implemented using PLINK (-
-pca) and the results were visualized with the R tidyverse package set v1.3.1%4, including dplyr

v1.1.4 and ggplot2 v3.5.1.

Next, we quantified genetic differentiation by calculating Fsr values between each pair of
lekking sites based on the stringently filtered dataset described above. Fsr values were
computed per SNP using VCFtools v0.1.17°° and then averaged across loci. To test whether
the mean Fsr values were significantly different from zero, we computed 1,000 bootstrap
replicates by resampling the pairwise Fst values across loci with replacement using the boot
package v.1.3.28%. Finally, we calculated the absolute differences between the resampled
mean Fst values and the mean Fsr of the original data, summed these values and divided them
by the total number of bootstrap replicates to obtain the p-value, which represents the

probability of observing a mean Fsr different from zero.

We used the same stringently filtered dataset to infer patterns of pairwise genomic relatedness
among individuals following the workflow of Humble e al.’’. NgsRelate v2°® was used to
compute three relatedness indices: KING-robust kinship, RO and R1%°. The KING-robust
kinship estimate can be used to distinguish between different levels of relatedness when allele
frequencies are unknown and is robust to population structure®. The RO and R1 statistics
specify whether zero or one copies of an allele are shared, respectively. Different categories of
relatedness are associated with non-overlapping ranges of R1, RO and KING-robust kinship

values.

To allocate pairs of individuals to specific relationship categories, we calculated the relatedness
coefficients p, Z0, Z1 and Z2 using the -genome function in PLINK>?. p is the overall
proportion of the genome that is identical by descent between any pair of individuals. Z0, Z1

and Z2 are coefficients that estimate the proportion of the genome for which zero, one or two



alleles of a pair of individuals are identical by descent, respectively. We used the method
described in Manichaikul e al.% to assign relationship categories to each pair of individuals
based on theoretical thresholds of the various relatedness coefficients. Pairs of individuals
were assigned to one of five relatedness categories: parent-offspring, full siblings, second-
degree relatives (e.g. half-siblings and grandparents-grandchildren), third-degree relatedness
(e.g. cousins) or unrelated individuals. To allow minor deviations from the theoretical
expectations for certain relationships, we classified pairs of individuals as falling within a given
relatedness category if they were within 0.01 of the respective inference threshold, following
Waples et al.®®. Those pairs that did not fall within the theoretical ranges of any category

including this additional margin were classified as “unknown”.
Controlling for the number of mutations

We compared the effect sizes of the total GERP load and the total SnpEff load while controlling
for the number of mutations. We randomly sampled 5,000 subsets of 1,000 mutations
separately for mutations with GERP scores > 4 and high impact SnpEff mutations. For each
subset, we then calculated the total load and fitted this as a predictor variable in a GLMM of
LMS. We included core versus non-core fitted as a fixed effect and lekking site as a random
effect. However, to decrease computational demand, these models were implemented using a
frequentist approach in the R package glmmTMB v1.1.10%°. We also repeated the above steps
to compare the effect sizes of mutations residing in the four genomic regions (promoters, TSSs,
introns and exons) separately for GERP and SnpEff. Because there were fewer mutations on
average in each of the four regions, we only selected 500 mutations for each random sample.
We calculated the tolerance intervals of the f estimates, which indicate the proportion of values

covered by the interval at a given confidence level, using the R package tolerance v3.0.0 6!,
Testing for the effects of mutations across biological pathways

We hypothesised that mutations affecting six biological processes could be particularly relevant
for reproductive success in black grouse males (Supplementary Table 5). To test this, we used
gene ontology (GO) annotations to identify subsets of deleterious mutations associated with
each biological process. A list of genes corresponding to each GO term along with their
descriptions®? was obtained using AmiGO version 2.5.17% (release date 2025-02-08). For each
GO term, we then extracted the deleterious mutations located in the promoter regions, introns
and exons of the associated genes (Supplementary Table 15). Mutations at the TSS were not

analysed separately, as this region is considered part of the promoter and contained relatively



few mutations for each GO term. To ensure the robustness of the analysis, we only included
GO-specific subsets with at least 15 mutations, which resulted in the exclusion of one GO term
(androgen metabolism) for SnpEff. We then calculated the total GERP load and total SnpEff
load separately for each subset of mutations and for each of the three genomic regions and
constructed Bayesian GLMMs of LMS as described above, one for each GO term, genomic
region and prediction approach. The total mutation loads were again z-transformed and the

same controlling variables and random effect structure was used as described above.
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Supplementary Figures

Supplementary Fig. 1. Genetic and relatedness structure of the black grouse study
population in central Finland. (a) Geographical locations of the lekking sites, with circle
sizes being proportional to the number of sampled lekking males (total » = 190) as shown in
the legend. Abbreviations: KUM = Kummunsuo, NYR = Nyrold, SAA = Saarisuo, LEH =
Lehtosuo, TEE = Teerisuo; (b) Results of the principal component analysis, with the lekking
sites colour coded as shown in the legend; (c¢) R1 coefficients plotted against KING-robust
kinship coefficients for all individual pairwise comparisons. The colours of the points indicate
relationship categories inferred by comparing PLINK Z scores with the inference criteria
derived from Manichaikul ef al. ® as shown in the legend; (d) A breakdown of the relatedness

structure of the population divided into comparisons within and among lekking sites.

a b .
A ) ° ° 0.2 o
KUM(60) san (27) YR (54) ¢
(] R °
LEH (29) R
c). . ° .’
TEE (20) ) o 8"
0 '5 10km 8 - o ®
[ — %
o
0.0 ‘\‘ " oge
O "!"
-0.1 ‘
-0.1 0.0 0.1 0.2
PC1(6.4%)
) . ® KUM e LEH e NYR
Lekking site . SAA TEE
€ 03 Ve s ® d
o 0 % ¢ Full siblings
o o™ @
eg 0o >
0.2 F % Parent offspring
Q 3
< 0.1 ¢ § Second degree
S
L )
00 (;:T‘: Third degree
Unrelated 17,483
0.4 0.6 0.8
R1 25 50 75 100
Related o Full-sibling o Third-degree Percentage of pairwise relationships
C:t:g%r;ess Parent-offspring  ® Unknown Pair origin Different site
Second-degree  ® Unrelated 9 M Same site

11



Supplementary Fig. 2. Phylogenetic tree used for the calculation of GERP scores. Shown
is an unrooted phylogenetic tree consisting of 74 avian species that was used for calculating

GERP scores. Different avian clades are colour-coded as shown in the legend.
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Supplementary Fig. 3. Distribution of fitness effects based on random subsamples of
deleterious mutations. Shown are histograms of the standardised f estimates of genomic
mutation load components based on randomly selected subsets of mutations on lifetime mating
success. For (a) the total GERP load and (b) the total SnpEff load, we took 5,000 randomly
selected subsets of 1,000 mutations. For (c) the total GERP load subsetted into four genomic
regions and (d) the total SnpEff load subsetted into four genomic regions, we took 5,000
randomly selected subsets of 500 mutations. The white circles represent the mean £ estimates,
the thick black lines the 80% tolerance intervals (alpha = 0.05) and the thin black lines the 95%
tolerance intervals (alpha = 0.05). The GERP load is shown in red and the SnpEff load is shown

in dark grey.
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Supplementary Tables

Supplementary Table 1. Outputs of Bayesian GLMMs of lifetime mating success (LMS).
Shown are point estimates, credible intervals (CIs; 95% and 80%) and R? values of the
standardised f estimates of the genomic predictors listed in the left column on LMS. The

conditional R? refers to the variance explained by the fixed and random effects, whereas the

marginal R? refers to the variance explained only by the fixed effects.

95% CI 80% CI Conditional | Marginal R?
Predictor Median
(lower, upper) | (lower, upper) | R2[95%CI] | [95%CI]
Total GERP 0.07 [0.04, | 0.02 [3.64¢7,
-0.21 -0.27,-0.14 -0.25, -0.17
load 0.11] 0.06]
Total SnpEff 0.050.03, | 0.01 [3.69¢7,
-0.11 -0.18, -0.04 -0.16, -0.06
load 0.08]) 0.03]
0.05[0.03, | 8.00e?
Fron -0.14 -0.20, -0.07 -0.23, -0.05
0.08] [4.57¢,0.03]
Homozygous
-0.57 -0.76, -0.39 -0.70, -0.45
GERP load 0.07 [0.04, | 0.02 [1.68¢*,
Heterozygous 0.11] 0.06]
-0.60 -0.78, -0.41 -0.72, -0.48
GERP load
Homozygous
-0.09 -0.17, -0.01 -0.15, -0.04
SnpEff load 0.05 [-.03, 0.01 [2.87¢™,
Heterozygous 0.08] 0.03]
-0.15 -0.24, -0.06 -0.21, -0.09
SnpEff load
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Supplementary Table 2. Full outputs of Bayesian GLMMs of lifetime mating success
(LMS) as a function of the total GERP load, the total SnpEff load and Fron. Shown are

point estimates and credible intervals (95% and 80%) of the intercepts, standardised S

estimates, standard deviations (SD) and zero-inflation factors. For the parameter ‘core versus

non-core’, the S estimates of the non-core males relative to the core males are shown. Because

all of the non-genomic terms are identical across the LMS models, we only report the full

model outputs of these exemplary models in order to avoid redundancy. The full outputs of all

of the other models can be found in the github repository (see the data availability statement

for details).
Model | Parameter Median % Cl 80% C1
(lower, upper) (lower, upper)
Intercept 1.73 0091, 2.36 1.31, 2.08
L of the total GERP load -0.21 -0.27,-0.14 -0.25,-0.17
L of core versus non-core 0.33 0.14, 0.51 0.20, 0.45
F§ SD intercept of lek site 0.59 0.29, 1.86 0.37,1.14
5 Zero inflation 0.49 0.42,0.57 0.45, 0.54
Q:g Intercept Kummunsuo -0.05 -0.68, 0.77 -0.41, 0.38
§ Intercept Lehtosuo -0.43 -1.16, 0.33 -0.84, -0.02
Intercept Nyrola -0.19 -0.82,0.61 -0.54, 0.26
Intercept Saarisuo 0.79 0.17,1.59 043,1.23
Intercept Teerisuo 0.10 -0.52,0.93 -0.26, 0.51
Intercept 1.76 1.09, 2.34 1.4,2.07
p of the total SnpEff load -0.11 -0.18, -0.04 -0.16, -0.06
L of core versus non-core 0.43 0.24, 0.61 0.30, 0.55
9 SD intercept of lek site 0.52 0.25,1.60 0.32,1.00
é Zero inflation 0.50 0.42,0.57 0.44, 0.54
Ué« Intercept Kummunsuo -0.07 -0.67, 0.61 -0.40, 0.28
% Intercept Lehtosuo -0.27 -0.92,0.40 -0.64,0.11
= Intercept Nyrola -0.25 -0.87,0.41 -0.59, 0.10
Intercept Saarisuo 0.69 0.10,1.34 0.36, 1.07
Intercept Teerisuo 0.03 -0.56,0.71 -0.31, 0.40
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Fron

Intercept 1.76 0.89, 2.36 1.39,2.10
S of Fron -0.14 -0.23, -0.05 -0.20, -0.07
L of core versus non-core 0.38 0.19, 0.56 0.26, 0.50
SD intercept of lek site 0.54 0.26,1.70 0.32,1.06
Zero inflation 0.50 0.43,0.57 0.45, 0.54
Intercept Kummunsuo -0.07 -0.67,0.77 -0.42,0.32
Intercept Lehtosuo -0.34 -1.02, 0.48 -0.72, 0.07
Intercept Nyrola -0.24 -0.87, 0.62 -0.60, 0.14
Intercept Saarisuo 0.69 0.10, 1.60 0.36,1.09
Intercept Teerisuo 0.09 -0.56, 0.99 -0.26, 0.50
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Supplementary Table 3. Outputs of Bayesian GLMMs of lifetime mating success stratified
by genomic region for deleterious GERP mutations (GERP scores > 4). Shown are point
estimates, credible intervals (95% and 80%) and R? values of the standardised /3 estimates of
the total GERP load calculated per genomic region. The conditional R? refers to the variance

explained by the fixed and random effects, whereas the marginal R? refers to the variance

explained only by the fixed effects.

95% CI 80% CI Conditional R? | Marginal R?
Region Median
(lower, upper) | (lower, upper) | [95%CI] [95%CI]
0.01 [4.18¢7,
Promoter | -0.18 -0.26, -0.09 -0.23,-0.13 0.07[0.04, 0.11]
0.04]
0.03 [1.00e73,
TSS -0.27 -0.35,-0.20 -0.32,-0.22 0.07[0.04, 0.11]
0.07]
0.03 [2.0e7,
Intron -0.29 -0.37,-0.21 -0.35,-0.23 0.06 [0.04, 0.09]
0.06]
0.02 [3.00e™,
Exon 0.23 0.15,0.31 0.18,0.29 0.07[0.04, 0.11] 0.05]
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Supplementary Table 4. Outputs of Bayesian GLMMs of lifetime mating success stratified
by genomic region for high impact SnpEff mutations. Shown are point estimates, credible
intervals (95% and 80%) and R? values of the standardised /3 estimates of the total SnpEff load
calculated per genomic region. The conditional R? refers to the variance explained by the fixed
and random effects, whereas the marginal R? refers to the variance explained only by the fixed

effects.

95% CI 80% CI Conditional R? | Marginal R?
Region Median
(lower, upper) | (lower, upper) | [95%CI] [95%CI]
0.02 [1.00e73,
Promoter | -0.26 -0.34,-0.18 -0.31,-0.20 0.06 [0.04, 0.10]
0.06]
0.05 [1.56¢7>,
TSS -0.04 -0.12, 0.04 -0.09, 0.01 0.05 [0.03, 0.09]
0.02]
0.01[8,93¢,
Intron -0.08 -0.15, 0.01 -0.13,-0.02 0.05 [0.03, 0.08]
0.03]
0.01 [6.60°,
Exon -0.06 -0.20, -0.03 -0.17, -0.06 0.05 [0.03, 0.08] 0.03]
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Supplementary Table 5. List of GO terms hypothesized to be important for male reproductive success in black grouse. For each GO term,

we provide its description from AmiGO® and the rationale for why deleterious mutations in genes associated with this term may impact male

mating success in black grouse.

of the progression of the
organism over time from one
condition to another.

grouse is a predictor of chick®' and
yearling survival®*' and correlates with
yearling territoriality*°.

GO term GO Accession | Description Rationale Hypothesis
The chemical reactions and
pathways involving Testosterone, an androgen, strongly ) )
Androgen . . . Deleterious mutations that reduce
. androgens, C19 steroid correlates with lek centrality, red eye . ,
metabolic GO0:0008209 _ . 29 . 2 - androgen production will be
hormones that can stimulate comb size*’, and mating success?® in )
process detrimental to male LMS.
the development of male male black grouse.
sexual characteristics.
The enzymatic release of
energy from inorganic and
organic compounds Lekking behaviour is energeticall . .
8 . P 33% ) 8 Y Deleterious mutations that affect the
Cellular (especially carbohydrates and | costly’® and efficient cellular . o .
o GO:0045333 L . A . efficiency of cellular respiration will
respiration fats) which either requires respiration may be important for .
. . .. . ) be detrimental to male LMS.
oxygen (aerobic respiration) sustaining such demanding behaviour.
or does not (anaerobic
respiration).
T?e 1ncr:ase m sge or mas;i Body mass in Galliformes is positively
Of an en 1re.organ1sm, ﬁ pa correlated with the growth of legs,
of an organism or a cell, . . :
Developmental here t}i increase in size or | 8 and the sternum throughout Deleterious mutations that reduce
\% w v/ . ,
P G0:0048589 . development®*. Body mass in black developmental growth will be
growth mass has the specific outcome

detrimental to male LMS.
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Any immune system process
that functions in the calibrated

Sexual traits are expected to be honest
signals of quality due to the
impairment of immune function

Deleterious mutations that cause a

Immune ) associated with elevated testosterone ) . .
G0:0006955 response of an organism to a 2526 e . suboptimal immune response will be
response o : . levels*>»*°. Indeed, stabilizing selection .
potential internal or invasive . o detrimental to male LMS.
acts on immunity in black grouse
threat.
males and has consequences for sexual
trait expression®.
. Individuals with greater glycogen
The progression of muscle i 8 Yeo8
) ) . storage in muscles (e.g. due to greater
tissue over time, from its . ) ) .
. . . . muscle mass) may be able to maintain | Deleterious mutations that impact
Muscle tissue initial formation to its mature . . . . .
GO:0060537 : ) higher display rates and store more muscle synthesis and maintenance will
development state. Muscle tissue is a 1233 1 ) .
o energy-—--. Higher display rates be detrimental to male LMS.
contractile tissue made up of | . .
. . increase black grouse reproductive
actin and myosin fibers. g
success®™°’.
Any process that results in a
change in state or activity of a
cell or an organism (in terms
of movement, secretion,
enzyme production, gene C . .
Y .p 8 Oxidative stress can affect investment . ) .
Response to expression, etc.) as a result of | . .\ 68 Deleterious mutations that impact
Lo L in growth and/or sexual traits®®, s L .
oxidative G0O:0006979 oxidative stress, a state often ) . .. | susceptibility to oxidative stress will
. especially the expression of carotenoid .
stress resulting from exposure to be detrimental to male LMS.

high levels of reactive oxygen
species, e.g. superoxide
anions, hydrogen peroxide
(H202), and hydroxyl
radicals.

and melanin-based ornamental traits?’.
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Supplementary Table 6. Outputs of Bayesian GLMMs of lifetime mating success stratified

by genomic region and GO term for deleterious GERP mutations (GERP scores = 4).

Shown are point estimates and credible intervals (95% and 80%) of the standardised S estimates

of the total GERP load calculated separately for each GO term and stratified by genomic region

(promoters, introns and exons).

Genomic 95% CI (lower, | 80% CI (lower,
GO term Median
region upper) upper)
Androgen metabolism | -0.33 -0.40, -0.25 -0.38, -0.28
Cellular respiration -0.25 -0.34, -0.16 -0.30, -0.19
Developmental growth | -0.22 -0.30, -0.15 -0.27,-0.17
ﬂg Immune response -0.23 -0.30, -0.15 -0.28, -0.18
% Muscle tissue
& -0.09 -0.17,-0.01 -0.14, -0.04
development
Response to oxidative
-0.11 -0.19, -0.02 -0.16, -0.05
stress
Androgen metabolism | 0.41 0.32,0.49 0.35,0.46
Cellular respiration 0.33 0.23,0.43 0.27,0.40
Developmental growth | 0.09 1.46¢3,0.18 0.03, 0.15
2| Immune response -0.29 -0.38, -0.21 -0.35,-0.24
S
= Muscle tissue
— 0.08 0.01, 0.15 0.03,0.13
development
Response to oxidative
-0.03 -0.12, 0.06 -0.09, 0.03
stress
Androgen metabolism | -0.17 -0.25,-0.10 -0.23,-0.12
Cellular respiration 0.01 -0.06, 0.09 -0.03, 0.07
Developmental growth | 0.05 -0.04, 0.13 -0.01, 0.10
2 Immune response 0.14 0.06, 0.23 0.08, 0.20
5]
s Muscle tissue
-0.02 -0.10, 0.07 -0.07, 0.04
development
Response to oxidative
-0.17 -0.25, -0.09 -0.22,-0.11
stress
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Supplementary Table 7. Outputs of Bayesian GLMMs of lifetime mating success stratified

by genomic region and GO term for high impact SnpEff mutations. Shown are point

estimates and credible intervals (95% and 80%) of the standardised £ estimates of the total

SnpEft load calculated separately for each GO term and stratified by genomic region.

Gene 95% CI 80% CI
GO term Median
region (lower, upper) | (lower, upper)
Cellular respiration 8.54¢ -0.09, 0.09 -0.06, 0.06
Developmental growth | -0.05 -0.14, 0.03 -0.11, 2.73¢3
% Immune response -0.25 -0.34, -0.17 -0.31, -0.20
Q
g Muscle tissue
5 0.05 -0.03,0.13 1.82¢+,0.10
& development
Response to oxidative
0.11 0.03,0.19 0.06, 0.16
stress
Cellular respiration 0.09 0.02,0.17 0.04,0.14
Developmental growth | 0.29 0.20, 0.38 0.23,0.35
Immune response -0.08 -0.15, -3.4073 -0.13,-0.03
§ Muscle tissue
= 0.20 0.11, 0.29 0.14,0.26
— development
Response to oxidative
0.37 0.28, 0.45 0.31,0.42
stress
Cellular respiration 0.19 0.10, 0.28 0.13,0.25
Developmental growth | -0.02 -0.10, 0.06 -0.07, 0.03
Immune response -0.14 -0.23, -0.05 -0.20, -0.08
g Muscle tissue
i 0.01 -0.07, 0.08 -0.04, 0.06
development
Response to oxidative
-0.07 -0.15,0.02 -0.12, -0.02
stress
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Supplementary Table 8. Outputs of Bayesian GLMMs of annual mating success. Shown
are point estimates, credible intervals (95% and 80%) and R? of the standardised S estimates of
the six sexual traits, the total load, and age category. For the parameter ‘age category’, the
estimates of yearlings relative to adults are shown. The conditional R? refers to the variance

explained by the fixed and random effects, whereas the marginal R? refers to the variance

explained only by the fixed effects.

95% CI | 80% CI
Conditional Marginal
Approach | Predictor | Median | (lower, (lower,
R2 [95%CI] | R2 [95%CI]
upper) upper)
. -0.07,
Lyre size 0.31 0.69 0.07, 0.57
Eye comb 0.13 -0.21, -0.10,
size ' 0.48 0.35
Blue -0.05,
chroma 0.15 0.36 0.01, 0.29
% Attendance | 1.32 0.71,2.01 | 0.91, 1.74 0.55 [0.40, 0.1 [0.02,
Fighting -0.33, -0.24, 0.69] 0.26]
© rate -0.06 0.21 0.11
) -0.93, - -0.81, -
Centrality | -0.59 0.23 036
-0.38, -0.28, -
Total load | -0.12 011 0.03
Age 0.17 -1.09, -0.78,
category ' 0.74 0.42
Lyre size 0.33 -0.08, 0.07,0.58
Y ' 0.72 ol
Eye comb 0.14 -0.21, -0.09,
size ' 0.49 0.37
Blue -0.06,
chroma 0.15 0.36 0.02, 0.29
-
% Attendance | 1.32 0.72,1.94 | 0.92,1.73 0.55[0.41, 0.10 [0.02,
S Fighting -0.32, -0.23, 0.68] 0.25]
A rate 0061690 0.11
) -0.94, - -0.82, -
Centrality | -0.57 0.2 0.34
-0.38, -0.27,
Total load | -0.11 0.16 0.06
Age 0.15 -1.04, -0.73,
category ) 0.79 0.45
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27
28
29
30
31

32

33

Supplementary Table 9. Outputs of Bayesian GLMMs of the six sexual traits. Shown are

point estimates, credible intervals (95% and 80%) and R? values of the standardised estimates

of total GERP load and age category. One model was constructed for each of the sexual traits

(see Methods for details). For the parameter ‘age category’, the festimates of yearlings relative

to adults are shown. The conditional R? refers to the variance explained by the fixed and

random effects, whereas the marginal R? refers to the variance explained only by the fixed

effects.
95% CI 80% CI
Conditional R2 | Marginal R2
Response | Predictor | Median | (lower, (lower, [95%CTI] [95%CTI]
upper) upper) ° °
) Total
X 0.03 |-0.10,0.04 |-0.07,0.02
: iEeRPload 0.88 [0.86, 0.89] 8';‘5‘] [0.72,
> 8 177 | -1.86,-1.68 | -1.82,-1.72 '
category
< Total 3
%g GERP load | 337 | 0:09,0.09 | -0.06, 0.05 0.40 [0.34,
SN 0.57[0.49,0.63] | 'y,
2 g¢ 131 | -147,-1.16 | -1.41,-1.21 '
o category
Total
< _ - -
5 & | GERP load 0.03 0.13,0.08 | -0.10, 0.04 0.10 [0.06,
25 Moo 0.42 [0.32, 0.50] 0.15]
5 g 0.67 |-0.85,-0.49 |-0.79,-0.55 '
category
51 Total
g GERP load | 010 | -0-19,-0.01 | -0.16,-0.05 033 027,
2 0.42 [0.33, 0.50] 0.39]
= Age 115 [-1.31,-0.99 | -1.26,-1.05 '
category
20 Total
ki 0.01 -0.09, 0.12 | -0.06, 0.08
R iEi{Pload 0.18 [0.09, 0.30] 8'(1);] [0.02,
i & 0.60 | -0.83,-0.37 | -0.75, -0.44 '
category
> Total
£ 0.04 -0.09,0.16 | -0.04,0.12
£ GERP load 0.440.32, 0.55] | 008 [0.03,
5 Age 0.62 0.40,0.84 | 0.48,0.76 0-13]
Q . 44, 0. 40, 0.
category
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35
36
37
38
39

40

41

42

Supplementary Table 10. Outputs of Bayesian GLMMs of the six sexual traits. Shown are

point estimates, credible intervals (95% and 80%) and R? values of the standardised estimates

of total SnpEff load and age category. One model was constructed for each of the sexual traits

(see Methods for details). For the parameter ‘age category’, the festimates of yearlings relative

to adults are shown. The conditional R? refers to the variance explained by the fixed and random

effects, whereas the marginal R? refers to the variance explained only by the fixed effects.

95% CI 80% CI Marginal
Conditional
Response | Predictor | Median | (lower, (lower, R2
R2 [95%CI1]
upper) upper) [95%CI]
° Total
N SnpEff 0.04 -0.04, 0.10 | -0.01, 0.08 0.88 [0.86, | 0.73 [0.72,
o load 0.89] 0.75]
ey Age 177 -1.84, - | -1.82, -1 '
category ’ 1.69 1.72
- Total
g ° SnpEff -0.01 -0.10, 0.07 | -0.07, 0.04 0.57 [0.50,|0.40 [0.35,
o w [load 0.63] 0.45]
= Age R I e R W5 PR B '
category ) 1.15 1.21
s Total
g -0.13,
£ |SmeBif 1 -0.07 007,008 Tgescs 1042 033, ] 001 [0.06,
S |load 0.50] 0.15]
E Age 067 -0.84, -1-0.79, - '
m category ' 0.49 0.55
3 Total
§ 1Sanff -0.03 -0.11, 0.06 | -0.08, 0.03 043 [034,]032 [0.26.
= oad 0.51] 0.38]
£ Age 017|132 -[-127. -7 '
< category | 0.99 1.06
2 Total
o SnpEff -0.02 -0.12,0.08 | -0.09, 0.04 0.18 [0.09,]0.07 [0.02.
= load 0.29] 0.12]
@ Age 0.58 -0.82, -1 -0.74, -1 '
A= category ) 0.36 0.43
- Total
a5 1Sanff -0.01 -0.14,0.11 | -0.09, 0.07 045 [0.32,]0.08 [0.03,
3= oad
= 0.55] 0.12]
Age
o 0.62 0.40,0.84 | 0.48,0.76
category
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Supplementary Table 11. Outputs of Bayesian GLMMs of the direct and indirect effects
of the total load on annual mating success (AMS). Shown are point estimates and credible
intervals (95% and 80%) of the standardised f estimates of the direct and indirect effects of the
total load on AMS through the six sexual traits calculated using the point method (see Methods
for details). The model outputs for the regressions used to calculate the indirect effects are

shown in Supplementary Tables 9-11. The direct effect of the total GERP load on AMS was

estimated while correcting for all of the sexual traits.

95% CI 80% CI
Approach | Effect Mediator Median
(lower, upper) | (lower, upper)
Direct — -0.13 -0.36,0.11 -0.29, 0.03
Lyre size -0.01 -0.04, 0.01 -0.03,0.01
Eye comb size 0.00 -0.02, 0.02 -0.01, 0.01
% Blue chroma 0.00 -0.03, 0.01 -0.02, 0.01
O Indirect
Attendance -0.13 -0.28, -0.01 -0.22, -0.05
Fighting rate 0.00 -0.02, 0.02 -0.01, 0.01
Centrality -0.02 -0.11, 0.05 -0.07, 0.02
Direct — -0.11 -0.38,0.16 -0.27, 0.06
Lyre size 0.01 -0.01, 0.05 0.00, 0.03
Eye comb size 0.00 -0.03, 0.02 -0.01, 0.01
G
G
B, Blue chroma -0.01 -0.04, 0.01 -0.03, 0.00
A Indirect
Attendance -0.03 -0.16, 0.09 -0.11, 0.04
Fighting rate 0.00 -0.01, 0.02 -0.01, 0.01
Centrality 0.01 -0.06, 0.09 -0.04, 0.06
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51  Supplementary Table 12. Population differentiation among lekking sites. Shown above the
52 diagonal are mean Fst values, while the corresponding p-values are shown below the diagonal

53  for each pairwise comparison.

54
Lekking site | Kummunsoa | Lehtusuo Nyrola Saarisuo | Teerisuo
Kummunsoa | — 0.012 0.017 0.014 0.016
Lehtusuo 0.512 — 0.014 0.009 0.009
Nyroli 0.527 0.457 — 0.017 0.017
Saarisuo 0.500 0.524 0.501 — 0.013
Teerisuo 0.488 0.506 0.536 0.527 —
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64

Supplementary Table 13. Outputs of Bayesian linear models testing for differences in the
total GERP and SnpEff loads and inbreeding (Fron) among leks. Shown are the median
estimates and their credible intervals (95% and 80%). Lekking site was used as a predictor,
where Kummunsuo was the reference lek, and the response variable was z-transformed. Bold

numbers indicate that the Cls do not overlap zero.

Median
Response Lekking site Bestimate 95% CI 80% CI

'§ Lehtusuo -1.62 -0.61, 0.27 -0.43,0.12
é Nyrola -0.10 -0.47,0.26 -0.34,0.13
? Saarisuo -0.11 -0.53,0.34 -0.40, 0.19
§ Teerisuo 0.10 -0.38, 0.59 -0.23,0.44
- Lehtusuo -0.08 -0.17,0.33 -0.09, 0.24
Ué - Nyrola -0.03 -0.47,0.41 -0.32,0.25
% E Saarisuo -0.05 -0.41,0.32 -0.30,0.19
= Teerisuo -0.17 -0.65, 0.33 -0.49, 0.16
Lehtusuo -0.58 -0.99, -0.16 -0.85,-0.30

- Nyrola -0.10 -0.44, 0.26 -0.33,0.12

Lg Saarisuo -0.27 -0.71, 0.16 -0.55,0.02
Teerisuo -0.09 -0.55,0.39 -0.39,0.21
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70

71

72

Supplementary Table 14. Summary statistics of the B10k and the scaffolded black grouse

reference genomes. N50 and N90 are the length in base pairs of the shortest contig whose

length sum makes up 50% and 90% of the total genome size, respectively. L50 and L.90 are the

count of the smallest number of contigs whose length sum makes up 50% and 90% of the total

genome size, respectively.

Statistic B10k genome Scaffolded genome
Total length (bp) 1,002,957,384 1,003,452,484

N50 5,658,217 69,550,540

L50 49 5

N90 500,392 12,704,504

L90 267 18

Number of scaffolds 26,930 21,979

Number of scaffolds > 1kbp | 10,613 5,662

Largest scaffold (bp) 32,946,576 189,864,486
Number of gaps 10,955 15,906
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76
77
78
79

80
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Supplementary Table 15. Summary of the number of genes and mutations identified for

each GO term. Shown are the number of genes associated with each GO term that contain

deleterious mutations, separately for GERP and SnpEff. Also shown are the total number of

deleterious mutations within those genes stratified across genomic regions (promoters, introns,

exons) for each GO term separately for GERP and SnpEff. Because there were too few high

impact SnpEff mutations in genes associated with androgen metabolic processes, we did not

calculate the total load based on this subset of mutations.

GERP SnpEff

GO term

genes | promoters | introns | exons | genes | promoters | introns | exons
Androgen
metabolic 8 9 56 14 1 1 0 1
process
Cellular 111 |84 542 (231 |18 |7 8 15
respiration
Developmental

504 | 563 3,920 | 1,505 | 76 32 49 56
growth
I
rmune 635 | 12,674 | 62,605 |3,460 | 102 | 1,554 1,504 | 2,764
response
Muscle ti
SCTETISSUE 304 | 384 2963|932 |43 |17 26 38
development
Response to
oxidative 340 | 320 2,126 [ 907 |6l 25 26 47
stress
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