nature ecology & evolution

Article

https://doi.org/10.1038/s41559-025-02802-8

Predicted deleterious mutationsreveal the
geneticarchitecture of malereproductive
successinalekkingbird

R.S.Chen®'
J. 1. Hoffman"%¢”7

Received: 4 December 2024

Accepted: 19 June 2025

, C.D.Soulsbury®2 K.Hench®", K. van Oers ®3* &

Published online: 11 August 2025

W Check for updates

Deleterious mutations are ubiquitous in natural populations and, when
expressed, reduce fitness. However, the specific nature of these mutations

and the ways in which they impact fitness remain poorly understood. We
exploited recent advances in genomics to predict deleterious mutations

inthe black grouse (Lyrurus tetrix), aniconic lekking species. Analysis of

190 whole genomes alongside comprehensive life-history dataincluding
repeated measures of behavioural, ornamental and fitness traits revealed

that deleterious mutations identified through evolutionary conservation

and functional prediction are associated with reduced male lifetime mating
success. Both homozygous and heterozygous deleterious mutations reduce
fitness, indicating that fully and partially recessive mutations contribute
towards anindividual’s realized mutation load. Notably, deleterious mutations
in promotors have disproportionally negative fitness effects, suggesting that
they impair anindividual’s ability to dynamically adjust gene expression to
meet context-dependent functional demands. Finally, deleterious mutations
impact male mating success by reducing lek attendance rather than by altering
the expression of ornamental traits, suggesting that behaviour serves as

an honestindicator of genetic quality. These findings offer insights into the
geneticarchitecture of male fitness and illuminate the complex interplay
between genetic variation and phenotypic expression.

Deleterious mutations segregate in all natural populations, reducing
fitness when expressed and contributing to an individual’s mutation
load (the reduction in fitness due to the accumulation of deleterious
genetic variants'). Theory on the fitness effects of deleterious muta-
tionsis well-established'*and empirical work has shown thatinduced
mutations (for example, throughionizing radiation) can disrupt sexual
trait expression*’ and reduce fitness®®. However, key attributes of
the deleterious mutations contributing to the mutation load remain

poorly understood, including their effect sizes and dominance coef-
ficients, whether they are located in coding or non-coding regions
of the genome, and how they influence reproductive success via the
expression of sexually selected traits’. Addressing these knowledge
gaps is essential for understanding the evolutionary dynamics of the
mutation load and the genetic architecture of fitness.

Recent advances in whole genome resequencing and bioinfor-
matics now allow for the prediction of deleterious mutations from
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genomic data, even in non-model organisms"'°. Two prediction
approaches are commonly used: evolutionary conservation, which
assumes that mutations in conserved regions are detrimental®, and
functional prediction, which evaluates the potential impact of muta-
tions on protein structure and function'>". The resulting predicted
deleterious mutations can be aggregated to estimate individual
genomic mutation loads, which are often used as proxy measures
of the genetic health of endangered species**. However, empirical
validation of the assumptions behind these approaches remains lim-
ited, withrecent studies focusing on functional predictions and using
modest sample sizes”s,

Studies of inbreeding depression typically infer the fitness effects
of deleterious mutationsindirectly by assuming that the expression of
recessive deleterious alleles across the genome scalesin proportionto
genome-wide homozygosity”. However, inbreeding coefficients are
not strictly informative about the number, genomic distribution and
fitness effects of deleterious mutations across anindividual’'s genome,
nor do they account for the effects of heterozygous deleterious muta-
tions. Theory suggests that partially recessive deleterious mutations
expressed in the heterozygous state also reduce fitness?® and thereby
contribute tothe realized load (the fraction of the total mutation load
that is expressed in the current generation'). Accordingly, individual
genomic mutation load estimates, which incorporate information on
bothhomozygous and heterozygous variants, should theoretically be
stronger predictors of fitness than genomic inbreeding coefficients.
In practice, however, the actual explanatory power of these measures
will depend on the precision of their estimation.

Once dismissed as ‘junk DNA’, non-coding regions, including regu-
latory elements such as promoters?, are increasingly recognized for
their functional significance?”’. However, the extent to which muta-
tionsinnon-coding regions affect phenotypes differently fromthose in
coding regions remains unclear?. Deleterious mutationsin non-coding
regions that disrupt gene regulation may reduce fitness by impairing
an organism’s ability to dynamically adjust gene expression to meet
context-dependent functional demands®. This may be particularly
relevantinthe context of sexual selection as mating strategies and deci-
sions depend on multiple factors that change over time, including age*
andbody condition”. Consequently, investigating the effects of delete-
rious mutations across different genomic regions could produce new
insightsinto the relationship between genetic variation and fitness.

Finally, deleterious mutations may impact male lifetime repro-
ductive success directly orindirectly by influencing the expression of
sexual traits, which can serve as honestindicators ofimmune function®
andbody condition”, potentially signalling genetic quality. The black
grouse (Lyrurus tetrix) is a lekking galliform that exhibits extremely
strong sexual selection, with both male-male precopulatory competi-
tionand female choice playingimportantroles. Sexual signalling in this
species is complex and involves a combination of behavioural traits
such as lek attendance, fighting rate and lek centrality®*, alongside
multiple sexual ornaments including blue chroma colouration®, lyre
size’®and eye comb size®. These traits convey different aspects of male
quality and integrate information over various timescales. Conse-
quently, sexual signallingin the black grouse is multidimensional and
dynamic, offering an exceptional opportunity to quantify the effects
of deleterious mutations on multiple sexual traits in order to identify
honest signals of genetic quality.

We combined whole genome sequencing data from 190 male
black grouse with comprehensive individual-based data toinvestigate
the geneticarchitecture of lifetime reproductive success. Our dataset
comprises complete life histories for 168 ‘core males’ captured as
yearlings and incomplete histories for 22 ‘non-core males’ captured as
adults. Individual measures of annual mating success along with data
on multiple behavioural and ornamental traits were gathered over a
decade (2002-2012inclusive) from five lekking sites in central Finland
(Supplementary Fig. 1a). We aimed to (1) quantify the fitness effects

of predicted deleterious mutations, including both homozygous
and heterozygous mutations; (2) evaluate the effects of deleterious
mutations across different genomic regions; and (3) isolate the direct
andindirect pathways through which deleterious mutationsinfluence
male reproductive success, focusing on their effects on the expression
ofbehavioural and ornamental traits.

Results and discussion

Sequencing to an average coverage of 32x generated 2.41 billion
150-base pair (bp) paired-end Illumina sequencing reads, which were
used to call 7,271,836 high-quality biallelic single nucleotide polymor-
phisms (SNPs). The study population showed little in the way of popu-
lation structure and 97.5% of all pairs of individuals were unrelated
(Supplementary Results and Discussion). Given the small proportion
of related pairs of individuals in our dataset, we do not anticipate that
relatedness structure will influence our results and conclusions.

Inbreeding

We found clear evidence of inbreeding, with F,,, (the proportion of
anindividual’s autosomal genome in runs of homozygosity (ROHs))
being non-zero across all individuals in the population (Fig. 1a). This
isin line with previous observations suggesting that black grouse do
not actively avoid inbreeding, although passive mechanisms such as
female-biased dispersal® and the limited temporal overlap of related
individuals due to sex-specific differences in lifespan® may reduceiits
occurrence. Inbreedinglevels varied substantially amongindividuals,
with Fpo ranging from 0.220 to 0.329 (Fig. 1a). The mean ROH length
was 65 kilobases (kb), corresponding to an average of 346 autozygous
SNPs, while the maximum ROH length was 29 megabases (Mb), cor-
responding to 189,221 autozygous SNPs. To investigate the antiquity
of inbreeding, we classified ROHs into three length categories: short
(<1Mb), intermediate (1-2 Mb) and long (>2 Mb), which correspond to
inbreeding events approximately >50, 25-50 and <25 generations ago,
respectively (Fig. 1b). The vast majority of ROHs were short (n = 692,103)
with relatively few intermediate (n=1,781) and long (n = 505) ROHs
being detected. Consequently, short ROHs contributed the most to
Fron, indicating thatinbreeding is mainly historical, datingback more
than 50 generations or roughly 150 years ago, assuming a generation
time of 3 years (ref. 35). However, long ROHs contributed dispropor-
tionately to Fyoy in some of the most inbred individuals, occasionally
spanning nearly entire scaffolds (Fig. 1c). This observed variation in
inbreeding amongindividualsis a prerequisite for detectinginbreed-
ing depression®.

Predicting deleterious mutations
We identified putatively deleterious mutations using two widely
adopted approaches, evolutionary constraint and functional
effect prediction, to evaluate whether they produce consistent insights.
Evolutionary constraint was estimated using GERP++ (ref. 37), which
quantifies the reductionin the number of substitutions ateach nucleo-
tide position throughout the genome compared to neutral expecta-
tions. Genomic evolutionary rate profiling (GERP) scores were assigned
to atotal of 6,954,487 SNPs residing on the 29 largest autosomal scaf-
folds (Methods) and ranged from —8.57 to 4.29, with higher GERP scores
indicating greater evolutionary constraint. The distribution of GERP
scores (Fig. 2a) was skewed towards lower values, with 52.4% of SNPs
having scores below zero, whichis athreshold commonly used to indi-
cate neutral evolution'**, To identify those mutations with predicted
deleterious effects, we focused on the 413,489 SNPs (5.9%) assigned
to the highest GERP score category (=4), as these mutations are most
likely to be deleterious, although they may not necessarily have the
largest effect sizes".

To annotate SNPs according to their predicted effects on protein
structure and function, we used SnpEff* to assign 6,375,440 auto-
somal SNPs to one of four non-mutually exclusive impact classes
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Fig.1| Genomicinbreeding in maleblack grouse. a, Histogram of genomic
inbreeding (Fy,) values across 190 individual males. b, The cumulative
contribution to Fyo,, of ROHs shorter than the length indicated on the x axis.
Eachlineindicates asingleindividual (n =190) and the value of Fy,; on the right
corresponds to the overall genomic inbreeding coefficient. ¢, The distribution of
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ROHs across the nine largest autosomal scaffolds. Each row represents a different
individual, with the five most inbred individuals (that is, with the highest Fyqy,
values) being shown above and the five least inbred individuals (that is, with

the lowest Fy,, values) being shown below. Individual scaffolds are indicated by
alternating background shades. Scaffold 4 is not shown as this is sex-linked.

(low, moderate, high and modifiers; Fig. 2b). To identify those muta-
tions with the strongest predicted deleterious effects, we focused on
the 5,341 SNPs (0.08%) classified as ‘high impact’, which are assumed
to have a high (disruptive) impact on the protein, including predicted
lost start and stop codons, loss of function (LOF) mutations, gained
stop codons and nonsense mediated decay mutations (Fig. 2c). Only
274 (5%) of these SNPs had a GERP score >4 and there was no evidence
for a decline in average GERP scores with decreasing SnpEff impact
category (Extended Data Fig. 1), echoing a previous study® that also
found little overlap between mutations predicted to have large effect
sizes through evolutionary conservation and functional prediction.
The majority of mutations with GERP scores >4 and high-impact SnpEff
mutations occurred at low frequencies in the population (Fig. 2d,e).
The number of deleterious mutations identified by GERP and SnpEff
isinfluenced by conceptual and methodological factors as described
inthe Supplementary Results and Discussion.

Next, we estimated individual genomic mutation loads by calcu-
lating the total number of derived deleterious mutations in each indi-
vidual’'s genome while correcting for variation in genotyping success as
describedinthe Methods. We further decomposed the total genomic
mutation load of eachindividualinto the ‘homozygousload’, compris-
ing deleterious mutations in homozygosity, and the ‘heterozygous
load’, comprising deleterious mutations in heterozygosity. This was
implemented separately for mutations with GERP scores >4 (hereafter
referred to as the ‘GERP load’) and mutations classified as being of high
impact by SnpEff (hereafter referred to as the ‘SnpEffload’). Individuals
carried on average 120,796 (+ 4,846 s.d., range 96,528-125,561) and
1,640 (+105s.d., range 1,235-1,793) mutations identified by GERP and
SnpEff, respectively, with the number of mutations in heterozygosity
beinglarger than the number of mutationsin homozygosity (Fig. 2f,g).
The total GERP and SnpEff loads were not significantly correlated
(Pearson’s r=0.13, P=0.08), suggesting that individuals with more
mutationsin evolutionarily conserved regions do not necessarily carry
more mutations with large predicted functional effects.

The total, homozygous and heterozygous loads were approxi-
mately normally distributed (Extended Data Fig. 2a,b). As expected,
FronWas significantly positively associated with the homozygous load
(GERP r=0.78, P<0.001; SnpEff r=0.28, P< 0.001; Extended Data
Fig.2c) and significantly negatively associated with the heterozygous
load (GERP r=-0.77, P<0.001; SnpEff r=-0.36, P< 0.001; Extended
Data Fig. 2c). However, no clear relationship was observed between
Fron and the total load (GERP r=-0.01, P=0.88; SnpEff r=-0.03,
P=0.63; Extended DataFig. 2c) indicating that, while Fy,,,canbe used
as proxy for an individual’s homozygous load, it is not necessarily
informative about anindividual’s total load.

Fitness effects of genomic mutation loads and inbreeding

To address a key knowledge gap concerning the fitness effects
of predicted deleterious mutations, we constructed separate Bayes-
ian generalized linear mixed effect models (GLMMs) of lifetime
mating success (LMS), fitting either the total GERP load or the total
SnpEffload as predictor variables together with core versus non-core
male as a fixed effect and lekking site as a random effect (Methods).
The posterior standardized  estimates were negative for both the total
GERPload (median S estimateis —0.21, 95% credible interval (CI) =-0.27,
-0.14; Fig. 3a, Extended Data Fig. 3a and Supplementary Tables1and 2)
and the total SnpEffload (median § estimate is —0.11, 95% Cl = -0.18,
-0.04; Fig. 3a, Extended Data Fig. 3band Supplementary Tables1and 2).
However, the negative association between the total SnpEffload and
LMS was only present when mutations flagged with warning messages
regarding the SnpEff database were excluded (with warning messages
included, median Sestimateis—0.07,95% Cl = -0.15, 0.01). This suggests
thattheaccuracy of the predictions of SnpEff depends on the quality of
thereference genome andits annotation. The stronger negative effect
of the total GERP load on LMS compared to the SnpEffload may be a
reflection of the distinct properties of those mutations identified by
each predictionapproach and/or the number of deleterious mutations
identified, as described in the Supplementary Results and Discussion.
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Fig. 2 |Predicted deleterious mutations in male black grouse. a, Bar plot
showing the number of mutations assigned to each GERP score category.
Mutations with the strongest predicted deleterious effects (that is, SNPs

with GERP scores >4) are highlighted in red. b, Bar plot showing the number

of mutations assigned to each SnpEffimpact category. Mutations with the
strongest predicted deleterious effects (that is, SNPs classified as ‘high impact’)
are highlighted in dark blue. ¢, A detailed breakdown of the mutations annotated
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by SnpEff. UTR, untranslated region. d, Histogram of allele frequencies of derived
putatively neutral (GERP scores <0) and highly deleterious (GERP scores > 4)
mutations. e, Histogram of allele frequencies of derived mutations classified

by SnpEffaslowand high impact. f, Histogram of the number of homozygous

and heterozygous mutations with GERP scores >4 across all 190 individuals.

g, Histogram of the number of homozygous and heterozygous mutations
classified by SnpEff as highimpact across all 190 individuals.

Our genomic mutation load estimates capture information on
both homozygous and heterozygous mutations, both of which are
expected to contribute to an individual’s mutation load?°. On the
basis of this, we hypothesized that the total GERP and SnpEff loads
would explain more variation in LMS than inbreeding. To test this,
we constructed a GLMM of LMS with Fo, as a predictor variable
together with the same fixed and random effects as described above.
We found clear evidence of inbreeding depression as the posterior
standardized g estimates of Fy,, were predominantly negative and
their 95% CI did not overlap zero (median g estimate is —0.14, 95%
Cl=-0.20,-0.07; Fig. 3a, Extended Data Fig. 3c and Supplementary
Tables 1and 2). In support of our hypothesis, the total GERP load
accounted for more than twice the variationin LMS compared to Fpoy
(median marginal 2 = 2.0% versus 0.8%, respectively; Supplementary
Table1). However, there was little difference in the explained variance

of the total SnpEff load (median marginal r*=1.0; Supplementary
Table1) and Fygy,.

Effects of the homozygous and heterozygous loads

To quantify the contributions of homozygous and heterozygous
mutations to fitness, we constructed a GLMM of LMS in which the
homozygous and heterozygous loads werefitted jointly as predictors
together with the same fixed and random effects described above, sepa-
rately for GERP and SnpEff. Including both load components together
inasingle model allowed us to quantify the fitness effects of each com-
ponent while controlling for the other (Extended Data Fig. 4). We found
that, regardless of the prediction approach, both the homozygous
and heterozygous loads were negatively associated with LMS (Fig. 3b,
Extended Data Fig. 3d,e and Supplementary Table 1). An effect of the
homozygous load on fitness is to be expected given that deleterious
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the standardized S estimates of the total GERP load partitioned into mutations
residing within regulatory and coding regions. d, Posterior distributions of the
PBestimates of the total SnpEffload partitioned into mutations residing within
regulatory and coding regions. The white circles represent the median posterior
estimates, the thick black lines the 80% Cls and the thin black lines the 95% Cls.

mutations in homozygosity will be expressed regardless of their
dominance coefficients. By contrast, an effect of the heterozygous
load should only be found if the mutations in question are not com-
pletely recessive, which is the expectation for deleterious mutations
with small to moderate effect sizes*°~*’. Additionally, we observed
that the effect sizes of the homozygous and heterozygous GERP loads
(median S estimates are —0.57 and -0.60, respectively; Fig. 3b) were
substantially more negative than the effect size of the total GERP load
(median g estimate is —0.21; Fig. 3a). This pattern probably arises
because the total GERPload does not account for the strong opposing
correlations of the homozygous and heterozygous GERP load with
genomic inbreeding (Extended Data Figs. 2c and 4).

Regulatory versus coding effects

Both functional non-coding and protein-coding regions can be subject
to purifying selection****, although the former include various regu-
latory elements such as promoters, enhancers and silencers, which
may experience different selective pressures, depending on their
roles in gene regulation. To investigate whether the fitness effects of
deleterious mutations differ by genomic region, we classified each

mutation according to its location within a promoter (excluding the
transcriptionstartsite (TSS), n =16,493 for GERP; n =1,151for SnpEff),
TSS (n=2,408 for GERP; n =913 for SnpEff), intron (n=104,045 for
GERP; n=2,204 for SnpEff) or exon (n = 21,581 for GERP; n = 3,813 for
SnpEff). We then computed the total load separately for each genomic
regionand prediction approach, and used the resulting values as pre-
dictor variables in separate Bayesian GLMMs of LMS, while including
the same fixed and random effects as described for the models above.

Forboth predictionapproaches, the total load in promoter regions
was negatively associated with LMS (Fig. 3c,d and Supplementary
Tables 3 and 4). Furthermore, when controlling for the number of
mutations, the festimates of the total SnpEffload in promoter regions
were substantially more negative than the 8 estimates of mutations
inother regions (Supplementary Results and Discussion). Promoters,
which facilitate transcription factor binding and initiate transcription,
are crucialin regulating gene expression®. Additionally, mutations in
highly conserved regulatory regions, which are often found near the
promoters of genes involved in critical developmental processes*™%,
can have deleterious effects as conserved regulatory regions tend to
stabilize gene expression more effectively than less conserved ones*.
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Finally, mutations in cis-regulatory regions are often codominant®,
suggesting that heterozygous mutations can have negative effects
on fitness. This is consistent with the observed negative effects of
the heterozygous GERP and SnpEffloads on LMS in the black grouse.

Results for TSS and intronic regions were more nuanced. The
posterior B estimates of the total load were mostly negative for
both GERP and SnpkEff, indicating ageneral trend towards deleterious
effects (Fig. 3c,d and Supplementary Tables 3 and 4). However, the
95% Cls for SnpEff overlapped zero, indicating weaker, less reliable
or less consistent negative associations for mutations predicted as
highimpact by SnpEffin these regions. When controlling for the num-
ber of mutations, the festimates of the total GERP load in the TSS were
substantially more negative than those of mutations in other regions
(Supplementary Results and Discussion). Mutations in the TSS are
expectedtobe deleterious because they canimpede RNA polymerase
binding, reduce transcription initiation and decrease translation
efficiency and messenger RNA stability*’. Indeed, expression quanti-
tative trait loci in model species are frequently located in or around
the TSS**, indicating that mutations in these regions can strongly
impact gene expression and phenotypic variation. Intronic muta-
tions, on the other hand, can be deleterious as they may disrupt
gene splicing™, which has been shown to have detrimental effects on
disease traits™.

The effects of exonic mutations on LMS varied, depending on the
prediction approach (Fig. 3c,d and Supplementary Tables 3 and 4).
While exonic mutations predicted by SnpEff were negatively associ-
ated with LMS, in line with theoretical expectations, exonic muta-
tions with high GERP scores were positively associated with LMS.
A potential explanation for this finding is that highly deleterious
exonic GERP mutations may be eliminated by viability selection during
early life stages, reducing embryonic or chick survival. Consequently,
exonic GERP mutations surviving to adulthood may be less harmful or
might even be beneficial owing to ongoing adaptation’ or functional
turnover”, explaining their overall net-positive association with LMS.

The phenotypic effects of deleterious mutations might further
dependonwhichgenesthey affect, and, consequently, which biological
processes are disrupted. For instance, deleterious mutationsin genes
influencing male sexual traits, such as those related to immunity***"*
androgen production® and oxidative stress®>®', might be particularly

relevant for male reproductive success. To investigate this, we used
gene ontology annotations toidentify subsets of deleterious mutations
withingenes associated with six biological processes hypothesized to
beimportant for sexual signalling and sexual selection (Supplementary
Table 5). We found that mutations in genes linked to specific processes
including androgen metabolism, immunity and response to oxidative
stress had negative effects on LMS (Supplementary Tables 6 and 7
and Extended Data Figs. 5 and 6), as described in the Supplementary
Results and Discussion.

Behavioural versus ornamental pathways

Little is known about how deleterious mutations impact fitness
through their effects on various phenotypic traits at the organismal
level. Sexually selected traits, because of their condition-dependence,
may represent a large mutational target, as proposed by the ‘genic
capture hypothesis®***, making them susceptible to the accumulation
of genome-wide mutations. However, it remains unclear whether the
mutation load affects male reproductive success directly orindirectly
viaits effects on sexual trait expression. To address this question, we
used extensive, individual-based repeated measures of behavioural
and ornamental traits collected on an annual basis to disentangle
the directandindirect effects of deleterious mutations on male repro-
ductive success.

First, we tested for adirect effect of the total GERP load on annual
mating success (AMS) by fitting it as a predictor variablein a Bayesian
GLMM alongside six behaviouraland ornamental traits: (1) lek attend-
ance; (2) fightingrate; (3) lek centrality; (4) lyre size; (5) eye comb size;
and (6) blue chroma. Fitting all of these predictors together in asingle
model allowed us to estimate the direct effect of the total GERP load
on AMS while controlling for the mediating effects of the behavioural
and ornamental covariates (Methods). As this model incorporates
repeated individual measures from males attending different leks,
we included a two-level fixed effect of age category (yearling versus
adult) together withsampling year and ID nested within lek as random
effects. Correcting for sampling year and lek further accounts for
population fluctuations that could influence male-male competi-
tion, mate availability and mating success. We found no evidence of a
direct effect of the total GERP load on AMS (median 8 estimate is
-0.13,95% Cl=-0.36, 0.11). Similarly, using the same model structure,
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we found no significant direct effect of the total SnpEffload on AMS
(median Sestimateis —0.11,95% Cl =-0.38, 0.16).

To investigate the indirect pathway(s) by which deleterious
mutations affect AMS, we constructed separate Bayesian linear mixed
effect models for each of the six behavioural and ornamental traits,
fitting the total load as a predictor variable. Age category was again
included as a fixed effect together with sampling year and ID nested
withinlek as random effects. We then quantified the indirect pathways
using mediation analysis, where indirect effects were calculated as the
product of the effect of the predictor (the total load) on the mediator
(sexual trait) and the effect of the mediator on the response variable
(AMS; Methods). We identified a single indirect pathway between the
total GERP load and AMS mediated by lek attendance (median S esti-
mateis—0.13,95% Cl =-0.28,-0.01; Fig. 4 and Supplementary Tables 8,
9 and 11). No evidence was found of any indirect pathways linking the
total SnpEff load to AMS (Extended Data Fig. 7 and Supplementary
Tables 8,10 and 11).

Formaleblack grouse, high lek attendanceis critical for achieving
reproductive success, as those males with the highest attendance typi-
cally secure the most central territories and engage more frequently in
energetically costly fights*>*. Furthermore, a males’ current lekking
performance is correlated with his past lekking effort®>¢. Conse-
quently, high lek attendance not only indicates short-term body con-
dition and display effort, but also reflects longer term, cumulative
reproductive effort®>*¢, which are traits expected to be influenced
by genome-wide deleterious mutations. The indirect pathway between
the total GERP load and AMS mediated by lek attendance therefore
supports previous studies of black grouse®**** and other lekking
species®, highlighting the critical role of lek attendance as a deter-
minant of male mating success.

Conclusions

Computational predictions of deleterious mutations are increasingly
used to evaluate extinction risks in vulnerable species®® and to opti-
mize conservation strategies®’. However, our understanding of the
fitness effects of these mutations and how they influence key life-history
traitsrelatedtosurvivalandreproductionremainslimited. Weaddressed
thisknowledge gap by integrating genomic and life-history data from
the black grouse, aniconic lekking species. Four important results
were obtained. First, two independent prediction approaches,
evolutionary conservation and functional prediction, both identi-
fied deleterious mutations associated with reduced male lifetime
reproductive success. This congruence of results effectively validates
both approaches, although lack of reliance of GERP on functional
annotations may offer advantages in non-model organisms, where
gene annotations are often incomplete or suboptimal.

Asecondkey insight was that mutations contributing toindividual
fitnessinmaleblack grouse are not limited to homozygous deleterious
mutations; heterozygous deleterious mutations also negatively impact
mating success, as pointed out by Morton et al.”° almost 70 years
ago. By implication, considering only homozygous mutations®’%”,
risks underestimating the true realized load due to the exclusion of
partially recessive mutations expressed in the heterozygous state.
The relative fitness contributions of homozygous and heterozygous
mutations are expected to vary across species depending on factors
such as genetic architecture’, dominance relationships” and
species-specific evolutionary histories’. Hence, further research
is needed to evaluate the effects of homozygous and heterozygous
mutations across a broad range of taxa and ecological contexts™.

Third, our results indicate that deleterious mutations located
in promoters (including the TSS) have disproportionally negative
effects on male reproductive success. This observation is consistent
with findings from model systems, where regulatory mutations have
been shown to have major impacts on ecologically relevant traits®””,
disrupt the stabilization of gene expression*’ and reduce translation

efficiency®. This suggests that regulatory elements should be given
more attention in studies of wild populations. Furthermore, it opens
up anexcitingresearch opportunity to explore how deleterious muta-
tions in promotors affect gene regulatory networks and the ability
ofindividuals to regulate gene expression to maximize their fitness.

Finally, our study uncovered a specific biological pathway through
which deleterious mutations appear to affect male mating success in
theblack grouse. Specifically, the total GERP load reduces lek attend-
ance, a crucial behavioural trait for mating success and an indicator
of genetic quality in several lekking species’”’. This suggests that
deleterious mutations in evolutionary conserved regions mainly
influence reproductive outcomes in this species through behav-
ioural changes rather than by altering the expression of sexual orna-
ments. Indeed, behavioural traits in black grouse are under constant
sexual selection throughout life, in contrast to ornamental traits®®,
which are strongly age-dependent and experience selection mainly in
older males®. As lekking behaviour captures variation in both short-
and long-term reproductive investment, which is highly dependent
onbody condition**®, our results are consistent with the genic capture
hypothesis, which posits that sexually selected traits reflect genetic
variation in condition influenced by genome-wide mutations®’.
By contrast, ornamental traits might be governed by specific genes,
such as those impacting the efficiency of metabolic pathways that
convert dietary carotenoids to red pigments®>®, as well as by epi-
genetic mechanisms that are sensitive to age®, genetic quality®* and
environmental factors®.

In conclusion, sexual signalling depends upon the intricate
coordination of multiple traits that are simultaneously expressed,
requiring mechanisms finely tuned to an individual’s resource
availability and allocation. Gene regulatory mechanisms enable
dynamic gene expression, allowing organisms to adapt their pheno-
types to context-dependent needs, which vary throughout their
lifespan. Disruptions to these mechanisms are therefore likely to be
detrimental tofitness, as our findings demonstrate. This crucial insight
into the genetic architecture of male reproductive success not only
advances our understanding of sexual selection but may also enhance
genomics-guided conservation efforts by highlighting the pivotal
role of regulatory regions in determining individual fitness.

Methods

All fieldwork was ethically approved by the Central Finland Environ-
mental Centre (permissions KSU-2003-1-25/254 and KSU-2002-14/254).

Data and sample collection

Life-history data and blood samples were collected from 190 male
black grouse between 2002 and 2012 inclusive from five study
sites in Central Finland (Supplementary Fig. 1a). For 171 males that
were first caught as yearlings®, hereafter referred to as ‘core males’
(data partially published in ref. 86), complete life histories were
obtained as previously described* while for the remaining 26 indi-
viduals (part of ref. 87), life histories were incomplete as these ani-
mals were not captured as yearlings. Morphological measures were
taken before the lekking season (January-March) by capturing the
birds in walk-in traps baited with oats®**°, The individuals were aged
as yearlings or older on the basis of their plumage characteristics®®.
Lyre length was measured to the nearest 1.0 mm as the length of the
longest outer tail feather from the base to the tip. Pictures of both eye
combs were taken with ascale held behind the bird’shead as a standard.
The combined area of both eye combs were measured (in cm?) using
ImageJ® and the sum of these measurements was used for analysis.
Next, a representative breast feather was collected to quantify blue
chroma reflection using a Avantes Spectrophotometer (GS 3100, EG
& G Gamma Scientific) as described by ref. 32. All the individuals were
marked with aluminium tarsus rings carrying unique serial numbers
as well as with three colour rings to facilitate identification from a

Nature Ecology & Evolution | Volume 9 | October 2025 | 1924-1937

1930


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-025-02802-8

distance. Blood (1-2 ml) was sampled from the brachial vein using a
heparinized syringe. Red blood cells were stored after centrifugation
in 70% ethanol at 4 °C.

During the main lekking season (end of March to April) of each
year, the birds were observed from before sunrise (02:00-04:00) until
they departed thelek (08:00-09:00) using binoculars and telescopes
from hides located close to the leks. Male mating success was quanti-
fied as the number of observed copulations with females on leks. LMS
was defined as the total number of observed copulations throughout
thelifespan of each individual male. LMS is astrong predictor of male
fitness as females generally mate once with a single male®, observed
copulations are highly concordant with true parentage inferred from
geneticdata’, and infertile clutches are rare”. Furthermore, although
male fitness is determined by additional factors such as clutch size,
hatching success and chick survival, sexual selection on male genetic
quality s likely to be strongest during precopulatory stages, as hatching
success and chick survival are predominantly dependent on environ-
mental factors®™.

Males were assumed to have died when they were never caught or
sighted subsequently. Male lekking behaviour was recorded using scan
sampling every 5thto 20th minute. The behaviours that were recorded
included (1) attendance (thatis, presence onthe lek); (2) fighting rate;
and (3) lek centrality. Lek attendance was calculated in proportion to
the highest attending male on the lek in that year. Fighting rate was
calculated as the percentage of scans when a male was observed per-
forming this behaviour. Lek centrality was measured as the distance
tothelek centre, calculated usinga10 x 10 m?grid systemon each lek.
Each males’ position was mapped to the closest 1 m on the grid and
the median of all mapped points was taken as his distance to the lek
centre. The centre of individual male territories was determined as
the median of all coordinates recorded per male during a given mating
season, and the overall lek centre was determined as the median of all
of the coordinates recorded during that mating season. Thus, lower
lek centrality values areindicative of more centrally displaying males.

DNA extraction and sequencing

Genomic DNA was extracted from red blood cells using either a Qiagen
Blood and Tissue Extraction Kit (162 individuals) or a standard
chloroform-isoamylalcohol protocol (28 individuals). Library prepa-
rationwas performed at the Beijing Genomics Institute as described in
the Supplementary Methods. The 150-bp paired-end sequencing reads
were generated on a DNBSEQ-G400 platform. The adaptor sequences
were subsequently removed and low-quality reads and contamination
were excluded using SOAPnuke®”. Low-quality reads were defined as
reads with more than 40% of bases with a quality value below ten. If
aread contained any Ns, the entire read was discarded. The quality
of the raw sequence data was checked using FastQC v.0.11.9 (ref. 94).

Genotyping

Before genotyping, we scaffolded and annotated an existing black
grouse reference genome assembled by the 10K Bird Project (B10K)*>°
as described in the Supplementary Methods. The quality filtered
reads were then aligned to the genome using the Burrows-Wheeler
alignment (BWA-mem) algorithm v.0.7.13 (ref. 97). The resulting SAM
files were converted into binary format and subsequently sorted and
indexed using samtools v.1.15.1 (ref. 98). SNPs were genotyped using the
mpileup algorithm from BCFtools v.1.11 (ref. 98), requiring a minimum
quality of 20 (-q 20) and the mapping quality of reads with excessive
mismatches was downgraded (-C 50). The range of the mean cover-
age across individuals per partially filtered SNP was 0.005-368x,
whereas the range of the mean coverage across SNPs per individual
was 22-33x.SNPs were further filtered using VCFtools v.0.1.17 (ref. 99)
foraminimumdepthof20x (--minDP20),amaximumof30%missingdata
(--max-missing 0.7), amaximum mean depth of twice the mean depth
(--max-meanDP 60) and a minimum quality score of 30 (--minQC 30).

Additionally, only biallelic SNPs were retained (--min-alleles 2,
--max-alleles 2) and indels were discarded (--remove-indels).

Population structure and relatedness

Tocharacterize the study population, we tested for population genetic
structure using PLINK v.1.90 (ref. 100) and quantified genetic differen-
tiation by calculating F¢; values among all pairs of leks using VCFtools
v.0.1.17 (ref. 99). We also quantified patterns of pairwise genomicrelat-
edness among individuals using NgsRelate v.2 (ref. 101) and PLINK'*°
as explained in Supplementary Methods.

Runs of homozygosity

ROHs were inferred using the --roh algorithm implemented in
BCFtools'®. This algorithm detects regions of autozygosity using a
hidden Markov model that assesses the likelihood of the two alleles at
agiven locus being identical by descent. The accuracy of Fyy,, estima-
tionwith BCFtools therefore does not depend onthe settings of sliding
window parameters'® used in other commonly used ROH detection
software like PLINK'**, Before ROH calling, we did not filter the dataset
for Hardy-Weinberg equilibrium (HWE), minor allele frequency (MAF)
or linkage disequilibrium (LD), as this has been shown to have little
impact on ROH calling performance but substantially reduces dataset
size'®, We only used genotypes with a minimum quality of 30 (--G30) to
identify autozygous regions with the default allele frequency settings.
The BCFtools output was filtered for ROHs that were at least 100-kb
long and contained a minimum of 100 SNPs. We then calculated each
individual’s genomicinbreeding coefficient, Froy, as the proportion of
theautosomal genomein ROHs'**. ROHs were divided into threelength
categories: short (<1 Mb), intermediate (1-2 Mb) and long (>2 Mb).
ROH lengths were converted to generations ago using the following

equation'®:

100
L=——
2xg

where L represents the ROH length measured in centimorgans and g
represents the number of generations ago. To convert ROH length in
base pairs to centimorgans, we assumed the ratio of genetic to physical
distancetobe1cM:1 Mb (ref.106). To convert generations into calendar
years, we assumed a generation time of 3 years for the black grouse™.
Our code for visualizing ROHs was adapted from ref. 107.

Predicting deleterious mutations
We estimated evolutionary conservation across the genome using
GERP++ (ref. 37). This software takes a multispecies alignment file as
input, evaluatesthe reductioninthe number of substitutions compared
toneutral expectations, and subsequently calculates a GERP score for
each position, with higher GERP scores indicating greater evolution-
ary conservation. To generate a multispecies alignment, we used the
publicly available multi-alignment file of 363 avian genomes (https://
cgl.gi.ucsc.edu/data/cactus/363-avian-2020.hal, downloaded on
16 October 2023) in HAL format'*® published by the Bird 10K consor-
tium? as a starting point, after which we used the Progressive Cactus
toolkitv.2.6.12 (ref.109) to edit the HAL file to our specific requirements.
First, we reduced the multiple alignment file to a total of 72
genomes using the halRemoveSubtree and halRemoveGenome com-
mands, excluding speciesin the Neoaves clade from the phylogenetic
tree. Next, we added the black grouse and the white-tailed ptarmigan
(Lagopusleucura, NCBI RefSeq assembly GCF_019238085.1) reference
genomes to the multiple alignment using the add branch command,
resulting in a phylogenetic tree consisting of 74 genomes (Supple-
mentary Fig. 2) with a total branch length of 5.19 substitutions per
site. The resulting HAL file was converted to MAF format per scaffold
using the command cactus-hal2maf. We estimated the branch-lengths
of the updated phylogenetic tree with iqtree v.2.2.6 (ref. 110) using a

Nature Ecology & Evolution | Volume 9 | October 2025 | 1924-1937

1931


http://www.nature.com/natecolevol
https://cgl.gi.ucsc.edu/data/cactus/363-avian-2020.hal
https://cgl.gi.ucsc.edu/data/cactus/363-avian-2020.hal

Article

https://doi.org/10.1038/s41559-025-02802-8

concatenation of 5,000 random 1-kb windows, while using a topology
created by TimeTree as a constraint. The windows were restricted
to non-coding regions with a minimum of 70 aligned genomes and
were extracted using a combination of functions from Progressive
Cactus'”’, maffilter™ and SeqKit"%. GERP++was subsequently used to
calculate expected and observed substitution rates per scaffold. We
excluded the Z chromosome from our analysis, which comprises 7.5%
ofthetotalgenomelength. We also excluded the black grouse genome
from the GERP score calculation by using the -j flag within the gerpcol
command. GERP scores were calculated on the basis of the 29 largest
autosomal scaffolds only because (1) these scaffolds comprise the
majority (97.4%) of the total autosomal genome length; (2) this measure
increased computational efficiency both at the HAL to MAF file con-
version step and for the calculation of the GERP scores because both
commands are executed per scaffold; and (3) among-species coverage
is expected to be lower for smaller scaffolds, potentially resulting in
lower GERP scores. A custom bash script was used to subset the GERP
scores calculated throughout the entire genome toinclude only loca-
tions corresponding to the filtered SNP dataset described above, using
the BEDOPS toolkitv.2.4.41 (ref. 113) and the intersect command from
bedtools v.2.27.1 package™. We did not filter the SNPs for HWE, MAF
or LD as this could lead to the exclusion of rare, highly deleterious
variants, resulting in genomic mutation loads being underestimated.

SnpEff

We predicted the effects of genetic variants using SnpEffv.5.2 (ref. 12)
with a custom SnpEff database built for the black grouse. Coding
regions and genes were extracted from the black grouse gene anno-
tation in GFF format using the gff3_to_fasta function from the GFF3
toolkit (https://github.com/NAL-i5K/GFF3toolkit). Protein sequences
wereinferred using the agat_sp_extract_sequences function in AGAT'".
We then built the custom database using the build command of SnpEff.
SnpSift'>was subsequently used to filter the database for high-impact
SnpEff mutations, defined as those classes of mutation that are
assumed to have disruptive effects on the protein — for example, due
to proteintruncation, loss of function or because the mutation triggers
nonsense mediated decay”. We excluded SnpEff annotations from
further analyses if they contained any kind of warning message, for
example regarding the genome annotation. For comparability with
the GERP results, we focused on SNPs residing only on the largest 29
autosomal scaffolds.

Genome polarization

We polarized the black grouse genome using the reconstructed
genome of the most recent common ancestor of the black grouse and
the white-tailed ptarmigan, which was generated by Progressive
Cactus (see above). The white-tailed ptarmiganis a small, non-lekking
grouse species that diverged from the black grouse around 7.1 million
years ago'*. Nucleotide differences between the black grouse and the
common ancestor were exported from the HAL alignment described
above using the halSnps command'® and the ancestral allele was
subsequently appended to the SnpEff-annotated VCF file using the
vcf-annotate command from VCFtools v.0.1.16 (ref. 99). Lastly, where
the reference allele in the VCF differed from the inferred ancestral
allele, we adjusted the genotypes of both alleles accordingly using the
jvarkitjava-based utility set v.1.1.0 (ref. 117) so that the ancestral allele
was encoded as 0 and the derived allele was encoded as 1.

Estimating individual genomic mutation loads

We estimated each individual’s total, homozygous and heterozygous
load based on the mutations identified by GERP and SnpEff, respec-
tively, focussing on derived mutations with large predicted disruptive
effects. For the former, we focused on mutations with GERP scores >4,
which are collectively referred to as the ‘GERP load". For the latter, we
focused on mutations identified by SnpEff as being of ‘high impact’,

which are collectively referred to as the ‘SnpEffload’. For both predic-
tion approaches, we calculated the total, homozygous and heterozy-
gous load of each individual as follows:

Lum + 0.5Lyr

Total load) = I
T

Lym
Homozygous load ;) = -
T

LHT
Heterozygous loadw] = T
whereL,,,isthe total number of homozygous derived lociin categoryj
inindividual i; L, is the number of heterozygous derived lociin cate-
goryjinindividual i; and L; is the total number of loci genotyped in
categoryjinindividuali.

Modelling the effects of predicted deleterious mutations on
fitness

Wetested for differencesin genomicinbreeding andindividual genomic
mutation loads among leks by constructing linear models of Fy,,, the
total GERP load and the total SnpEffload with lekking site included as
afixed effect predictor variable. We found no significant differences
inthe total load between any pairs of leks, but a significant difference
in Fpo, between one pair of sites (Supplementary Table 12). There-
fore, we included lek as a random effect in all our statistical models
to control for differences in genomic inbreeding as well as potential
lek-specific environmental or demographic differences that might
influence the modelled traits.

Next, to evaluate the effects of individual genomic mutation loads
on LMS, we constructed Bayesian GLMMs using the R package brms
v.2.19.0 (ref. 24). Beforehand, we tested for zero inflationina frequen-
tist nullmodel of LMS with the testZerolnflation functionin DHARMa"®,
Astheresult was statistically significant (P < 2.2 x 107™), we used azero-
inflated Poisson distribution for all models of LMS. Models were
constructed separately for the total GERP load and the total SnpEff
load. Following previous studies (for example, refs. 119-121), these
models assumed the additivity of deleterious mutations, where the
ancestral alleleis expected to only partially suppress the expression of
the derived allele in the heterozygous state. Thus, both homozygous
and heterozygous mutations were considered to contribute towards
the total mutation load. In these models, the z-transformed total load
wasincluded as afixed effect, with mutationsin the homozygous state
contributing twice as much as mutations in the heterozygous state,
reflecting the number of alleles that contribute towards the total muta-
tion load. We also included core versus non-core male as a two-level
fixed effect and lek as a random effect in these models. Afterwards,
we repeated the models while fitting the z-transformed homozygous
load and the z-transformed heterozygous load together as predictors
for both prediction approaches. Finally, as the number of deleterious
mutations identified by GERP and SnpEff differed substantially, we
compared their effect sizes on LMS while controlling for the number
of mutations as described in the Supplementary Methods.

Testing for the effects of mutations in different genomic
regions

Next, we annotated each mutation to determine whether it overlapped
aTSS, promoter, intron and/or exon using R packages GenomicFeatures
v.1.42.3 (ref. 122) and rtracklayer v.1.50.0 (ref. 123). We defined a
promoter as the region located between 2,000-bp upstream and
200-bp downstream of the annotated starting position of the genes'.
A TSS was defined as being located between 300-bp upstream and
50-bp downstream of the gene’s starting position'?. If amutation was
found withinaTSS, it was alsoinherently located within the promoter
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region; therefore, we annotated it solely as being located in the TSS
to avoid redundancy. Next, we calculated the total GERP load and the
total SnpEffload separately for each of the four genomic regions and
constructed eight Bayesian GLMMs of LMS as described above, one
foreach genomicregion and prediction approach. The total mutation
loads were again z-transformed and the same controlling variables and
random effect structure were used as described above. Finally, as the
number of deleterious mutations varied among different genomic
regions, we compared their effect sizes on LMS while controlling for
the number of mutations as described in the Supplementary Methods.

Mediation analysis

Toinvestigate whether deleterious mutations affect male reproductive
success directly or indirectly via the expression of behavioural and/or
ornamental traits, we performed amediation analysis in two consecutive
steps. First, we constructed six separate Bayesian LMMs testing for the
effects of the total load on lek attendance, fighting rate, lek centrality,
lyre size, eye comb size and blue chroma. We included age as a two-
level fixed effect (yearling versus adult) and sampling year and ID nested
withinlekking site as random effects in these models. In the second step,
we constructed a single Bayesian GLMM of AMS that included the six
sexual traits as well as the total load as fixed effects. All seven variables
were z-transformed to allow the computation of their relative contri-
butions towards AMS. We again included age category as a fixed effect
and sampling year plus ID nested within lekking site as random effects,
while using a zero-inflated Poisson distribution as described above.
Fitting all the traits in a single model allowed us to isolate the effect
of each trait on reproductive success while controlling for the effects
of the other traits. We then calculated the direct and indirect effects
of the total load on AMS using the product method™. Specifically, we
estimated indirect effects as the product of the effect of the predictor
(thatis, the total load) on the mediator (that s, the sexual trait) and the
effect of themediator ontheresponse variable (thatis, AMS). The direct
effect was estimated as the effect of the predictor on the response vari-
able, adjusted for the effects of the mediators. This analysis was imple-
mented separately for the total GERP load and the total SnpEffload.

AlltheBayesianmodelsdescribedinMethodswererunforone million
iterations using four independent Markov chains, with a thinning inter-
valof1,000 and aburn-in period of 500,000 iterations. We used generic
weakly informative priors for the population-level effects (normal dis-
tributionmean =0, s.d. =1) and tested for prior sensitivity by repeating
all models with the default brms priors and with an alternative prior
specification (population-level effects mean =10, s.d. =10; intercept
mean =30, s.d.=10) to ensure that our conclusions were not biased by
the specified priors. Model performance was diagnosed by analysing
divergent transitions, convergence, autocorrelation, R hat statistics
and effective sampling sizes using the R package bayesplot v.1.10.0
(ref.127). For each model, Bayesian versions of R> were calculated using
the r2_bayes function from the performance package v.0.12.3 (ref. 128).
Aresult was considered to be statistically significantif the 95% Cl of the
B estimate did not overlap zero'”. The full model outputs of the
Bayesian GLMMs, including estimates for all of the fixed and random
effects, can be found in the github repository (https://github.com/
rshuhuachen/ms_load_grouse) under output/intervals.

All statistical analyses were implemented in R v.4.4.1 (ref. 130)
using Rstudio v.2023.12.1.402 (ref. 131) and the results were visualized
usingthe R packages ggplot2v.3.4.4 (ref.132), cowplot v.1.1.1 (ref. 133),
bayesplotv.1.10.0 (ref.127) and ggridges v.0.5.4 (ref.134). The majority
of bioinformatic workflows were integrated into Snakemake v.7.14
(ref.135) using a conda environment with Anaconda v.23.7.4 (ref. 136)
for enhanced reproducibility'.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All code, phenotypic data and individual genomic mutation load esti-
mates, as well as the genome annotation, are available via Zenodo at
https://doi.org/10.5281/zenodo.15608151 (ref.138). All sequencing data
(SRA Study SRP499251 with BioAccession numbers SRR28526036-
SRR28526225), the reference genome (GCA_043882375.1) and the
RNA-seq data used for the genome annotation (SRA BioAccession no.
SRR28789699) can be found under NCBI BioProject PRINA1085187.

Code availability

The code used for dataanalysis and creating the figures is available via
Zenodo at https://doi.org/10.5281/zenodo.15608151(ref. 138). The sum-
marized code for the mainanalyses in RMarkdown-style can be found
inhtml formatat https://rshuhuachen.github.io/ms_load_grouse/.
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Genome-wide heterozygosity is positively associated with the heterozygous load,
but negatively associated with the homozygous load. Bothload components are
theoretically expected to reduce fitness. To isolate the individual effects of each
load component on fitness, both the heterozygous and homozygous load must
beincluded in the same statistical model to account for their association.
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reproductive success in the black grouse (see Supplementary Table 5 for details
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reproductive success in the black grouse (see Supplementary Table 5 for details
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