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Haplotype-resolved chromosomal reference genomes are increasingly available for many fungi, offering insights into the evolution of
pathogenic and symbiotic lifestyles. However, these resources remain scarce for ectomycorrhizal fungi, which play crucial roles in forest
ecosystems. Here, we used a combination of chromatin conformation capture and PacBio sequencing to construct a haplotype-resolved
chromosomal genome assembly for Boletus edulis, a prized edible fungus and emerging model for ectomycorrhizal fungal research. Our
new reference assembly, “BolEdBiel_h2,” derives from a B. edulis sporocarp sampled in Bielefeld, Germany. The genome assembly
spans 41.8 Mb, with a scaffold N50 of 4.1 Mb, and includes 11 chromosome-level scaffolds, achieving near telomere-to-telomere cover-
age across multiple chromosomes. We annotated a total of 15,406 genes, with a Benchmarking Universal Single-Copy Orthologs score
of 96.2%. Key genomic features such as mating loci, carbohydrate-active enzymes, and effector proteins, were identified. As a first ap-
plication of this new genomic resource, we mapped whole-genome resequencing data from 53 genets to investigate the population
structure and genetic diversity of the European lineage of B. edulis. We identified 2 distinct genetic clusters and found that high-latitude
populations from Iceland and Fennoscandia exhibited greater nucleotide diversity than populations from the United Kingdom and
Central Europe. Additionally, we discovered a 0.4-Mb inversion on chromosome 3 and identified several regions of locally elevated nu-
cleotide diversity, which may represent candidates for ecological adaptation. This genomic resource will facilitate a deeper understand-
ing of this ecologically and commercially important wild fungus.
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polymorphic DNAs, amplified fragment length polymorphisms,
and simple sequence repeats allowed researchers to distinguish
individual genotypes in natural settings, paving the way for stud-
ies of clonality and genetic diversity (Bonello et al. 1998; Amend
et al. 2009). More recently, advancements in high-throughput se-
quencing technologies have broadened the scope of EMF research,
providing detailed insights into population structure (Branco et al.
2016), gene flow (Tremble, Hoffman, et al. 2023), gene content
(Kohler et al. 2015), adaptation (Bazzicalupo et al. 2020), and mo-
lecular evolution (Looney et al. 2022).

Introduction

Ectomycorrhizal fungi (EMF) play a crucial role in the functioning
of forest ecosystems worldwide. They facilitate nutrient cycling
(Read and Perez-Moreno 2003), contribute to carbon sequestration
(Anthony et al. 2024), and enhance the growth, immunity, and
pathogen resistance of nearly 60% of all trees (Steidinger et al.
2019). However, despite their critical roles in forest ecosystems,
our understanding of the ecology and evolution of EMF remains
limited. This knowledge gap arises partly from the difficulty of

studying these predominantly subterranean organisms, which
typically cannot be cultured in the laboratory beyond the myce-
lium stage due to their symbiotic lifestyles.

Over the past 3 decades, molecular genetic approaches have
been pivotal in expanding our understanding of EMF, facilitating
both ecological and evolutionary research (Douhan et al. 2011).
Classical genetic markers such as randomly amplified

A key requirement for modern population genomic studies is
the availability of high-quality, annotated, chromosome-level ref-
erence genomes. These resources enable gene discovery (Mariene
and Wasmuth 2025) and the characterization of patterns of
variation across the genome, including structural variants (SVs)
(Amarasinghe et al. 2020), runs of homozygosity (Brejon
Lamartiniere et al. 2024), and recombination landscapes
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(Weissensteiner et al. 2017). New sequencing approaches such as
Hi-C (high-throughput chromosome conformation capture;
Belton et al. 2012) have been instrumental in improving the con-
tiguity of genome assemblies by allowing sequencing reads to be
assembled into phased haplotypes. These techniques have al-
ready been used to generate chromosomal reference genomes
for several cultured and domesticated fungi (Morin et al. 2012;
Engel et al. 2013; Yu et al. 2022; Ma et al. 2023). However, to date,
chromosomal reference genomes have only been published for 2
EMF, Tricholoma matsutake and Suillus bovinus (Kurokochi et al.
2023; Zhang et al. 2024).

Generating and analyzinglong contiguous DNA sequences may
represent the next frontier in genomic studies of EMF, as multiple
recent studies of cultured and domesticated fungi have uncovered
genomic structural variation both among and within dikaryons
that may play a role in fungal evolution. For example,
Sperschneider et al. (2023) used phased chromosomal assemblies
of the arbuscular mycorrhizal fungus Rhizophagus irregularis to
demonstrate that separate heterokaryon haplotypes are distinct
functional and regulatory units that can independently modulate
the expression of host plant genes. Similarly, Borgognone et al.
(2018) showed that DNA methylation in the saprotrophic genus
Pleurotus can be haplotype-specific and tends to be higher around
transposable elements (TEs), where it reduces potentially mal-
adaptive gene expression. As many EMF also have a heterokaryo-
tic life stage, haplotype-resolved chromosomal EMF reference
genomes are likely to become important resources for under-
standing the biology of this important group of fungi.

Boletus edulis Bull., known variously as the king Bolete, Penny
Bun, cépe de Bordeaux, Steinpilz or porcino, is one of the most
charismatic and economically important EMF species worldwide.
While the majority of commonly found EMF associate with just
1 or 2 host plant genera (Voller et al. 2024), B. edulis forms mutual-
istic associations with diverse plant genera, from the most
dominant forest trees of the northern hemisphere (Fagus,
Quercus, Pinus, Picea, Betula, Castanea, and Pseudotsuga) to alpine
miniature shrubs (Treindl and Leuchtmann 2019). It also has a
broad geographical distribution spanning Eurasia and North
America. For these reasons, B. edulis has recently emerged as a
promising model system for studying the ecology and evolution
of EMF (Hoffman et al. 2020; Tremble et al. 2020; Tremble, Brejon
Lamartiniere, et al. 2023; Tremble, Hoffman, et al. 2023; Brejon
Lamartiniere et al. 2024).

The first global-scale population genomic study of B. edulis
found evidence for six distinct lineages that diverged from one an-
other between 1.6 and 2.7 million years ago (Tremble, Hoffman,
et al. 2023). Reference genomes have already been generated for
all of these lineages (Tremble, Brejon Lamartiniere, et al. 2023),
but they vary considerably in contiguity and completeness, and
none of them are haplotype-resolved or assembled to the chromo-
somal level. The most contiguous of these reference genomes,
which comprises a total of 38 scaffolds with an N50 of 2.5Mbp, is
available for the Alaska lineage, while the least contiguous refer-
ence genome, which comprises 488 scaffolds with an N50 of 0.17
Mbp, is available for the European lineage. Moreover, these refer-
ence genomes were generated using haplotype-unaware meth-
ods, which limits the detection of SVs, especially in highly
repetitive genomes (Ebert et al. 2021).

Within the B. edulis complex, the European lineage exhibits the
widest geographical and ecological distribution, ranging from
Mediterranean grasslands to the Scandinavian tundra. This lineage
is also associated with the greatest diversity of host species
(MyCoPortal, http:/www.mycoportal.org/portal/index.php), which

is reflected by its expanded symbiosis-related gene repertoire
(Tremble, Brejon Lamartiniere, et al. 2023). Developing a chromo-
somal reference genome for this lineage would allow for a more in-
depth exploration of population structure, local adaptation, and
host specialization, not only across Eurasia, but also on a broader
scale. Thisis particularly importantin the context of climate change,
as many forests of the northern hemisphere are being strongly im-
pacted by warmer and drier conditions (Gazol et al. 2017). A deeper
understanding of forest adaptation is essential and this must in-
clude EMF, which play a vital role in helping trees cope with
climate-induced stress.

In this study, we combined highly accurate long-read Pacbio
HiFi sequencing with Hi-C to generate a haplotype-resolved
chromosomal genome assembly for the European B. edulis lineage.
We predicted key genomic features including mating loci,
carbohydrate-active enzymes (CAZymes), TEs, and overall gene
content. Additionally, we investigated structural and gene copy
variation within the reference individual and explored longer-
term patterns of synteny with S. bovinus (Zhanget al. 2024). To fur-
ther contextualize the reference genome, we mapped short-read
data from 53 European samples to explore patterns of population
genetic structure and diversity.

Materials and methods
Sporocarp tissue sampling

A total of 15 g of tissue from the inner cap flesh of a B. edulis spor-
ocarp was collected from a Fagus woodland in Bielefeld, Germany.
It was sequentially frozen at 4°C for 30 min and then at —20°C for
30 min, before being stored at —80°C. DNA isolation, library prep-
aration, sequencing, and genome component prediction were per-
formed by Biomarker Technologies GmbH as described below. In
addition, tissue from the same individual was dried and archived
in the Senckenberg Museum of Natural History, Gorlitz, under the
reference GLM-F139661.

Genomic DNA isolation and sequencing

DNA was extracted from the sporocarp tissue using a QIAGEN
Genomic-tip 20G kit. To generate a highly contiguous assembly,
long-read sequencing was conducted as follows. Libraries were
constructed according to PacBio standard protocol and sequenced
on a PacBio Sequel II platform by BMKgene. The resulting raw cir-
cular consensus sequences were quality-filtered using smrtlink
v12 with the parameters -min-passes 5 -min-rq 0.9, assembled
into scaffolds using Hiflasm v0.12 (Cheng et al. 2021), and cor-
rected using Pilon v1.17 (Walker et al. 2014).

Hi-C libraries were constructed using the Illumina mate-pair
kit and sequenced on an Illumina NovaSeq X plus platform. The
resulting paired-end Hi-C reads were filtered using HiC-Pro
v2.10.0 (Servant et al. 2015), separated into haplotypes through in-
tegration with long reads using Hifiasm v0.12, and aligned to the
long-read assembly using bwa v0.7.10 (Li and Durbin 2009). The
contigs were then clustered, ordered, and oriented using
Lachesis (Burton et al. 2013). To visualize chromatin interactions
and genome contiguity, we generated a chromatin contact heat
map using the command-line version of Juicer v1.6 (Durand
et al. 2016).

Preliminary genome annotation

A repeat database was constructed using a combination of
LTR_FINDER v1.05 (Xu and Wang 2007), MITE-Hunter (Han and
Wessler 2010), RepeatScout v1.0.5 (Price et al. 2005), and
PILER-DF v2.4 (Edgar and Myers 2005). The database was sorted
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with PASTEClassifier (Hoede et al. 2014) and merged with the
Repbase database (Bao et al. 2015). RepeatMasker v4.0.6 (Smit
et al. (2013-2015)) was then used to predict repeat elements in
the fungal genome based on this combined database. Gene predic-
tion was performed through both de novo and homology-based
approaches. The de novo prediction utilized Genscan (Burge and
Karlin 1997), Augustus v2.4 (Stanke et al. 2004), GlimmerHMM
v3.0.4 (Majoros et al. 2004), GenelD v1.4 (Alioto et al. 2018), and
SNAP (version 2006-07-28) (Johnson et al. 2008). For homology-
based prediction, GeMoMa v1.3.1 (Keilwagen et al. 2019) was
used to identify homologous protein-coding genes. The results
from both approaches were integrated using EvidenceModeler
v1.1.1 (Haas et al. 2008). Noncoding RNA was predicted using
tRNAscan-SE -version 2.0 (Chan and Lowe 2019) for tRNA and
Infernal 1.1 (Nawrocki and Eddy 2013) for other noncoding
RNAs. Pseudogenes were identified by aligning homologous genes
from the predicted protein list and the Swiss-Prot database
(Bairoch and Apweiler 2000) to the genome using GenBlastA
v1.0.4 (She et al. 2009), followed by the detection of early termin-
ation and frameshift mutations with GeneWise (Birney et al.
2004). Gene clusters were identified using antiSMASH v6.0.0
(Medema et al. 2011). CAZymes encoding genes were annotated
using hmmer -v3.4 (Finn et al. 2011) based on the CAZy database
(Cantarel et al. 2009). Loci encoding effector proteins were pre-
dicted wusing EffectorP v3.0 (Sperschneider et al. 2016).
Approximate centromere locations were identified visually based
on Hi-C interactions. AT content at these locations was inspected
in R using 1-kb sliding windows.

Haplotype comparisons and evolutionary context

To investigate the quality of the alternative haplotypes, we iden-
tified the positions of conserved Benchmarking Universal
Single-Copy Orthologs (BUSCO) genes from the basidiomyco-
ta_obd10 database using BUSCO v5.7.1 (Sim&o et al. 2015) separ-
ately for each haplotype. We also ran gene and TE prediction on
each haplotype using Funnanotate v1.8.17 (Palmer and Stajich
(2023)) and EDTA v2.2.0 (Ou et al. 2019), respectively. To evaluate
mapping coverage, we aligned sequencing reads from 53
European B. edulis samples to both haplotypes using the mem?2 al-
gorithm from bwa (https:/github.com/bwa-mem2/bwa-mem?2)
with the default parameters. These sequencing data included pre-
viously published Illumina MiSeq, HiSeq, and NovaSeq data from
49 samples (Tremble, Brejon Lamartiniere, et al. 2023) as well as 4
additional samples from Bielefeld, Germany, that were 150 bp PE
sequenced to 30 x coverage on a BGI T7 platform. To compute
the average depth of coverage per position, we used a 500-kbp slid-
ing window with a 50-kbp step, combining the VCFtools command
—site-mean-depth (Danecek et al. 2011) and the GenomicRanges
Grange function in R (Lawrence et al. 2013).

After characterizing and comparing the 2 haplotypes, as de-
scribed in the results, we selected haplotype 2 for all subsequent
analyses. The mating locus MATa identified by (Tremble, Brejon
Lamartiniere, et al. 2023) and the annotated STE3 genes from the
MATb locus in the B. edulis bedl genome accessed from JGI
MycoCosm (Miyauchi et al. 2020) were located in the reference
genome using BLAST v2.2.31 (Altschul et al. 1990). We also
checked for the presence of telomeric sequences and located
them in the genome using the Telomere Identification Toolkit
TIDK (Brown et al. 2023). Finally, we analyzed patterns of synteny
between the B. edulis reference genome and the chromosomal as-
sembly of S. bovinus (Zhang et al. 2024) through the identification
and mapping of putatively identical Basidiomycota BUSCO genes.

European population structure and genetic
diversity

As a first application of this newly generated resource, we analyzed
patterns of population genetic structure and genome-wide diversity
within the European B. edulis lineage. After mapping short-read data
from 53 genets to haplotype 2 of the reference genome following the
workflow described above, variants were called using a 3-step ap-
proach implemented in GATK v4.4.0 (McKenna et al. 2010). First, var-
iants were called with HaplotypeCaller, then, the files were
aggregated into a single database using GenomicsDBImport, and fi-
nally, an all-site unfiltered multi-sample VCF file was generated with
GenotypeGVCF. This file was then filtered for single-nucleotide poly-
morphisms (SNPs) with a minor allele frequency (MAF) > 5%, map-
ping quality > 15, missing genotypes < 20%, a minimum depth of
coverage of 5, and a maximum depth of coverage of 100 using
VCFtools. We then computed a principal component analysis
(PCA) of the data using pcadapt (Luu et al. 2017) on the filtered
VCF. In addition, we calculated nucleotide diversity (r) in windows
of 10 kb with a step size of 1kb across the genome. This analysis
was conducted separately for individuals from different geographic-
al regions with a sample size greater than 5 using the VCFtools
-window-pi and -window-pi-step commands. The all-site VCF in-
cluded invariant loci, which were pruned as described previously,
while only excluding the MAF filter.

Results and discussion
Genome assembly quality

The PacBio-generated scaffolds achieved a 100% Hi-C an-
choring rate for both haplotypes, resulting in 2 chromosome-
level assemblies consisting of 11 pseudo-chromosomes each
(“BolEdBiel_h1” and “BolEdBiel_h2,” respectively, Table 1, Fig. 1a,
and Supplementary Fig. 1 and 2; see Supplementary Tables 1
and 2 for details). The high quality of these assemblies is evident
from their excellent chromosome contiguity, low numbers of
gaps per chromosome (Table 2), and high BUSCO scores, which ex-
ceeded 96.6% for both haplotypes, with the score being slightly
higher for haplotype 2. Genome sizes for the 2 haplotypes were
53 and 41 Mbp, respectively, with both exhibiting a GC content
of 53.7%. However, the scaffold N50 was slightly lower for haplo-
type 1 (3.8 Mbp compared with 4.1 Mbp for haplotype 2). This dis-
crepancy is partly due to the fact that over 15% of the total length
of haplotype 1 comprised unanchored scaffolds. When mapping
short-read sequencing data from 53 European individuals to this
haplotype, coverage for all but one unplaced scaffold was very
low (mean=2.2 vs 25.9, respectively, Fig. 1b), reflecting their
high content of repetitive DNA.

We found a strong positive association between chromosome
length and gene number (z=30.39, P <0.001, Fig. 1c). However,
this relationship did not hold when comparing homologous
chromosomes. In most cases, haplotype 1 was longer than
haplotype 2 (Fig. 1a and d), yet there were no significant differ-
ences between homologous chromosomes in terms of gene
count (Fig. 1d) and the abundance of TEs (Fig. 1e). Based on these
results and the slightly better quality metrics for haplotype 2, in-
cluding higher scaffold N50 and BUSCO scores, along with the
low coverage of haplotype 1-specific contigs, we selected
BolEdBiel_ h2 as the preferred reference genome for the
European lineage of B. edulis. Nonetheless, both haplotypes
have excellent quality metrics and, given that there is no linkage
across chromosomes, the choice of haplotype is somewhat arbi-
trary. Therefore, both assemblies could potentially be used for
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Table 1. Quality metrics for the B. edulis haplotype assemblies.

Haplotype Length Chromosomes Scaffolds Contigs Contig  Scaffold  n BUSCOs (%) %GC  Totallengthin Total length
(bp) N50 (bp) N50 (bp) content transposable  in repetitive
elements DNA
BolEdBiel_h1 53,135,892 11 311 321 3,363,843 3,798,680 C: 1,704 (96.6%) 53.7 9,434,133 3,330,036
S: 1,630 (92.4%)
D: 74 (4.2%)
F: 19 (1.1%)
M: 41 (2.3%)
BolEdBiel_h2 41,815,337 11 73 90 2,952,305 4,104,162 C: 1,709 (96.8%) 53.7 8,893,489 3,536,600
S: 1,643 (93.1%)
D: 66 (3.7%)
F:17 ( %)
M: 38 (2.2%)
C, complete; S, complete and single copy; D, complete and duplicated; F, fragmented; M, missing.
a
Chr1 Chr2 Chr3 Chr4 Chr5 Chré Chr7 Chr8 Chr9 Chr10 Chrit
iel_h
- Large inversion
iel_h2
Chrt Chr2 Chr3 Chr4 Chrb Chré Chr7 Chr8 Chr9 Chr10 Chr11
b Chr1 Chr2 Chr3 Chr4 Chrs Chré Chr7 Chr8 Chr9 Chr10 Chr11
60
Unplaced scaffolds
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a
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Fig. 1. Comparison of the 2 B. edulis haplotype assemblies. a) Patterns of synteny between the 2 haplotypes of each pair of homologous chromosomes. To
facilitate visualization, we reversed and complemented the alignments of chromosomes 5, 6, 7, and 9 from haplotype 1 and highlighted the inversion on
chromosome 3 in green. b) Depth of mapping coverage of whole-genome resequencing data from 53 genets from the European B. edulis linage to haplotype
1. The orange line represents the mean mapping coverage, with the dark gray shaded region representing the 95% confidence interval. The chromosomes
are represented by alternating gray and white blocks. c) The relationship between chromosome length and gene number. The black line represents the fit
of a Poisson regression with the gray shaded region representing the SE. d) and e) show comparisons of gene number counts and TE content between the

longest and shortest haplotypes, respectively. In a),

research in this species, particularly for pan-genomic or struc-
tural variation analyses.

The synteny analysis also uncovered a 0.4-Mbp inversion on
chromosome 3 (Fig. 1a). We confirmed this inversion by evaluating
PacBio sequence mapping rates using the integrative genomics
viewer (Thorvaldsdoéttir et al. 2012). Inversions can play important

c), d), and e), haplotypes 1 and 2 are color-coded in gray and orange, respectively.

roles in evolution by limiting or suppressing local recombination,
which helps to maintain genetic diversity and adaptive potential,
and can also drive population divergence and speciation
(Hoffmann and Rieseberg 2008). In extreme cases, inversions
have been found to induce shifts from mutualism to pathogenesis
(Somvanshi et al. 2012). Consequently, further research into this
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SV might help to illuminate the genetic mechanisms underlying
the host adaptability and ecological flexibility of B. edulis.

Genome content

Focusing on BolEdBiel_h2, we de novo predicted a total of 15,406
genes with an average length of 1.7 kb, which together account
for ~53.4% of the total genome length (41.8 Mbp). Additionally,
we identified 11,890 repetitive sequences, mostly comprising
long terminal repeat retrotransposons (Supplementary Fig. 3),
which represented 35.4% of the genome length in chromosomes.
Ten telomeric repeats, (TTAGG)n, were identified in 8 of the 11
chromosomes. Near telomere-to-telomere assemblies were
achieved for chromosomes 5 and 10, with the former being gap-
less (Fig. 2 and Table 2), which is a rarity in EMF. Telomeres, and
chromosome ends in general, have been linked to several
important biological processes. For example, in the fungal
pathogen Pyricularia, telomere-adjacent regions are enriched for
genes involved in host adaptation (Rahnama et al. 2021). Similar

Table 2. Length and number of gaps per chromosome from each
haplotype.

Chromosome BolEdBiel BolEdBiel BolEdBiel BolEdBiel
_h1length _h1gaps _h2length _h2 gaps
1 4,187,054 4 4,111,618 0
2 4,077,455 1 4,390,755 1
3 4,381,500 0 4,281,452 1
4 2,924,582 0 3,539,504 5
5 3,798,680 0 3,304,873 0
6 3,044,205 1 2,742,422 2
7 4,131,713 1 4,104,162 0
8 3,361,260 0 2,952,305 0
9 2,691,760 3 2,670,009 3
10 4,848,437 0 4,360,388 4
11 3,363,843 0 3,500,508 1
P —
4e+06 ] —
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patterns might be expected in EMF. In addition, the centromeres
were identified based on their elevated interaction frequencies
within the 3-dimensional chromatin architecture (Mizuguchi
et al. 2014) which was visible in the Hi-C contact data
(Supplementary Figs. 1 and 2). We found that, for most of the chro-
mosomes, the centromere region exhibited high AT content rela-
tive to the rest of the chromosome (Supplementary Fig. 2). A
similar pattern has been reported in other fungi, including the
yeasts Candida glabrata and Saccharomyces cerevisiae, both of which
possess centromeric DNA elements with an AT content exceeding 85%
(Roy and Sanyal 2011).

We sought to identify the genomic locations of genes encoding
carbohydrate-active enzymes (CAZymes), which have evolved in
fungl to degrade carbohydrates such as lignin and cellulose.
While typically associated with saprotrophism, CAZymes are
also present to a lesser extent in EMF where they may support
nutrient acquisition (Gong et al. 2023). We annotated 413 genes
as encoding CAZymes, representing 2.7% of the total gene
content. This is comparable to the 2.2% reported for S. bovinus, an-
other EMF species (Zhang et al. 2024). These genes were unevenly
distributed across chromosomes, with chromosome 9 carrying
only 15 CAZymes compared with 52 on chromosome 1 (Fig. 2).
We alsoidentified genomic regions where multiple CAZymes clus-
tered together. For example, at position 14,673,340 in the genome
(located on chromosome 4), 4 CAZymes were found within a
54-kbp region (Fig. 2). These clusters may represent remnants of
an ancestral presymbiotic lifestyle, as similar gene arrangements
have been observed in wood-decaying fungi (Li et al. 2017). Further
exploration of these CAZyme clusters might therefore provide in-
sights into how EMF adapt to diverse environmental conditions.

Effector proteins are secreted by pathogenic fungi to manipu-
late host defenses during colonization (Li et al. 2024). They have
also been shown to play a similar role during the early establish-
ment of mycorrhizal symbioses, facilitating fungal colonization of
host roots (Li et al. 2024). However, this process remains poorly

PN
S N o
= —_ = & E — CAZymes
— — = = — Effector proteins
— — — = ~— /\ Telomeres
— = T < [wATMatingloci

N = X Cent
- X f— - - Centromeres
e MATa -

= = = =

~ =
7 8 9 10 11

Fig. 2. The distribution of key features in the B. edulis reference genome. Shown are the genomic locations (in haplotype 2, BolEdBiel _h2) of mating loci,

genes encoding CAZymes and effector proteins, centromeres, and telomeres.
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Boletus edulis
BolEdBiel_h2

Suillus bovinus

SB11

Fig. 3. Patterns of chromosomal synteny between B. edulis and S. bovinus. The Circos plot depicts alignments of BUSCO genes from haplotype 2 of B. edulis
(top) to the reference genome of S. bovinus (below). The B. edulis chromosomes are shown in color, and the S. bovinus chromosomes are shown in gray.

understood, and only a small number of EMF effectors have been
linked to plant gene expression pathways (Plett et al. 2011;
Daguerre et al. 2020). Identifying these genes in the reference gen-
ome is therefore an important first step toward understanding
their function and regulation in this species. We identified a total
of 116 genes putatively encoding effector proteins. In pathogenic
fungi, effector genes are often clustered in genomic regions ex-
periencing rapid evolution, such as near telomeres (Zaccaron
et al. 2022). However, the flanking regions of the 10 telomeric se-
quences identified here did not appear to be enriched for genes en-
coding effector proteins (Fig. 2).

Mating type (MAT) loci play a major role in determining sexual
compatibility and reproduction in fungi (Coelho et al. 2017). In this
tetrapolar species, we identified both mating loci: MATa on
chromosome 9 and MATb on chromosome 1 (Fig. 2). Tetrapolar
species are generally considered less prone to selfing than bipolar

species. In line with this, a recent study of B. edulis found no evi-
dence of recent inbreeding (Brejon Lamartiniere et al. 2024), des-
pite the presence of locally elevated relatedness (Hoffman et al.
2020). This suggests that the mating loci may contribute toward
the maintenance of high levels of heterozygosity and genetic di-
versity within B. edulis populations. Future studies could use pedi-
grees to model the involvement of MAT loci in mating outcomes
and inbreeding/outbreeding dynamics.

Patterns of synteny

To provide phylogenetic and evolutionary context, we investi-
gated patterns of synteny between B. edulis and S. bovinus based
on shared BUSCO genes. While both species belong to the order
Boletales, S. bovinus is part of the family Suillaceae, which di-
verged from Boletaceae ~115 million years ago (Wu et al. 2022).
Despite sharing an ectomycorrhizal lifestyle with B. edulis,
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Fig. 4. Population structure and genetic diversity of the European lineage of B. edulis. a) Sampling locations of 53 genets, color-coded by geographical
region. b) Scatter plots of individual variation in principal component (PC) scores derived from PCA of the genomic data. The amounts of variation
explained by each PC are given as percentages on the axis labels, and the samples are color-coded as shown in a). ¢) Nucleotide diversity (x) calculated in
10-kb sliding windows across the genome for every population. The left panels show violin plots of the kernel densities of n together with standard Tukey
boxplots (center line = median, bounds of the box = 25th and 75% percentiles, upper and lower whiskers = largest and smallest values but no further than
1.5 *inter-quartile range from the hinge). The right panels show = values for each window across the 11 chromosomes. The dashed white lines represent

lineage-specific genome-wide average = values.

S. bovinus has a more restricted host range, primarily associating
with Pinaceae (Zhang et al. 2024). Surprisingly, we observed high
levels of synteny between these species (Fig. 3), despite their con-
siderable phylogenetic distance, differences in chromosome num-
bers, and the structural and size variation present between
homologous B. edulis haplotypes (Supplementary Table 1).
Notably, large BUSCO gene segments on chromosomes 1 and 8
of B. edulis showed structural conservation with chromosomes 3

and 6 respectively of S. bovinus (Fig. 3). Generating additional
chromosomal reference genomes for other EMF species would
provide deeper insights into genome evolution through compara-
tive chromosomal synteny analyses across multiple species.

Population structure and genetic diversity

We analyzed short-read data from 53 genets (Fig. 4a,
Supplementary Table 3, Tremble, Hoffman, et al. 2023; Brejon
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Lamartiniére et al. 2024, and this manuscript) to genotype 937,328
SNPs for the assessment of population structure and genetic di-
versity within the European B. edulis lineage. Two main clusters
were resolved in the PCA, with samples from the United
Kingdom and Central Europe separating from samples from
Iceland and Fennoscandia along the first axis (Fig. 4b). Notably,
a single genet sampled in North America, which was assigned to
the European lineage by Tremble, Hoffman, et al. (2023), clustered
in the PCA alongside the Fennoscandian and Icelandic samples
(Fig. 4b). Although we cannot be certain, this suggests that this in-
dividual may have been introduced to America from a tree planta-
tion originating in northern Europe.

Genetic diversity was not evenly distributed among the genetic
clusters (Fig. 4b). Populations at higher latitudes, specifically those
in Iceland and Fennoscandia, exhibited higher genome-wide nu-
cleotide diversity () than populations from the United Kingdom
and Central Europe. This observation aligns with our previous
finding of a negative (but nonsignificant) association between lati-
tude and genomic inbreeding within the European B. edulis lineage
(Brejon Lamartiniere et al. 2024). Several factors may contribute to
this pattern, including greater habitat availability and continuity
in the north, where much of Iceland and Fennoscandia remains
covered by forests or tundra. Additionally, differences in the
amount of gene flow with the neighboring “AK’ lineage, which
spans Alaska and Siberia, may also play a role (Tremble, Brejon
Lamartiniere et al. 2023). Above and beyond this pattern, we also
identified regions of elevated = within the B. edulis genome. Some
of these regions were shared among the clusters, such as a prom-
inent peak near the beginning of chromosome 10, while others
were not universally shared, appearing only on specific chromo-
somes (Fig. 4c). These regions could represent areas of structural
variation, they may be under balancing selection, or they might
experience locally elevated recombination. This highlights the po-
tential of the European lineage of B. edulis as a model for studying
these diverse evolutionary processes.

Conclusion

Population genomic studies of EMF hold great potential for advan-
cing our understanding of these ecologically important organ-
isms. However, the contiguity of reference genomes continues to
be a limiting factor. This study presents one of the first
haplotype-resolved chromosomal reference assemblies for a di-
karyotic EMF, achieving near telomere-to-telomere coverage
across multiple chromosomes. Using chromatin conformation
capture, we successfully anchored PacBio long reads to chromo-
somes for each haplotype. This approach revealed structural vari-
ation within homologous chromosomes of the reference
individual and identified key areas for future research.
Specifically, we identified mating loci, CAZymes and effector pro-
teins, discovered a 0.4-Mb inversion on chromosome 3, investi-
gated the population genetic structure of the European lineage,
and discovered several genomic regions with locally elevated nu-
cleotide diversity. We anticipate that this new resource will facili-
tate future discoveries in this enigmatic and ecologically
important fungus.
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