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Abstract

Inbreeding, the mating of individuals that are related through common ancestry, is
of central importance in evolutionary and conservation biology due to its impacts on
individual fitness and population dynamics. However, while advanced genomic ap-
proaches have revolutionised the study of inbreeding in animals, genomic studies of
inbreeding are rare in plants and lacking in fungi. We investigated global patterns
of inbreeding in the prized edible porcini mushroom Boletus edulis using 225 whole
genomes from seven lineages distributed across the northern hemisphere. Genomic
inbreeding was quantified using runs of homozygosity (ROHs). We found appreciable
variation both among and within lineages, with some individuals having over 20% of
their genomes in ROHs. Much of this variation could be explained by a combination
of elevation and latitude, and to a lesser extent by predicted habitat suitability during
the last glacial maximum. In line with this, the majority of ROHs were short, reflect-
ing ancient common ancestry dating back approximately 200-1700 generations ago,
while longer ROHs indicative of recent common ancestry (less than approximately 50
generations ago) were infrequent. Our study reveals the inbreeding legacy of major
climatic events in a widely distributed forest mutualist, aligning with prevailing theo-
ries and empirical studies of the impacts of historical glaciation events on the domi-

nant forest tree species of the northern hemisphere.
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1 | INTRODUCTION

Since the time of Darwin, inbreeding, the increase in genome-wide
homozygosity that occurs due to the inheritance of identical by de-
scent (IBD) segments from a common ancestor, has been recognised
as a major evolutionary force influencing mate choice, dispersal and
individual fitness (Darwin, 1876; Wright, 1984). Inbreeding also
shapes evolutionary dynamics at the population level, where the loss
of fitness due to inbreeding depression can have profound negative
demographic consequences (Charlesworth & Charlesworth, 1987;
Charlesworth & Willis, 2009). Furthermore, the detrimental effects
of inbreeding can be exacerbated by environmental stress (Meagher
et al., 2000), meaning that inbreeding depression is often stronger
in populations experiencing challenging conditions. Consequently,
studies of inbreeding are essential for understanding evolutionary
mechanisms and the long-term persistence of natural populations
inhabiting changing environments.

Traditionally, the study of inbreeding in natural mammalian
and bird populations required long-term field observations for the
construction of multigenerational pedigrees (Pemberton, 2008).
However, pedigrees are exceptionally difficult to build in non-animal
systems and this is ultimately impossible for cryptic groups such as
fungi. Many studies have therefore used the heterozygosity of small
numbers of microsatellites as a proxy for inbreeding (Keller, 2002).
However, microsatellite-based measures of inbreeding tend to be
highly inaccurate and lack the resolution of genomic approaches
(Balloux et al., 2004). Fortunately, the discovery of runs of homozy-
gosity (ROHSs) in human genomes (Gibson et al., 2006) and the fall-
ing costs of whole genome resequencing have led to a step change
in the study of inbreeding in wild populations (Kardos et al., 2016).
ROHs occur when a diploid individual inherits two copies of the
same IBD haplotype from its parents, resulting in long homozygous
tracts in the genome (Gibson et al., 2006). By summing up over
these IBD segments, an individual's genomic inbreeding coefficient
Fron can be quantified to base-pair resolution as the proportion of
the genome in ROHs (McQuillan et al., 2008). Additionally, ROHs
carry information about the antiquity of common ancestry (Kirin
et al., 2010). This is because recombination breaks down IBD hap-
lotypes at each successive generation, resulting in smaller ROHs
for ancient IBD segments and longer ones for recent IBD segments
(Gibson et al., 2006). Hence, ROH length frequency distributions can
testify to variation in past effective population sizes.

Since their early discovery, ROHs have been used to uncover
global patterns of inbreeding in humans and to elucidate their cul-
tural and demographic determinants (Kirin et al., 2010). Genomic
studies have shown that ROHs in contemporary human populations
have been shaped by cultural practices that promote consanguine-
ous marriages (Kirin et al., 2010; Pemberton et al., 2012) and carry
signatures of historical founder events and population expansions
that occurred as mankind spread out of Africa to colonise the world
(Pemberton et al., 2012). Furthermore, ROHs have been linked to
complex phenotypic traits including height, educational attainment,
depression, Alzheimer's disease and cancer (Ceballos et al., 2018).

More recently, the increasing availability of genome-wide data has
led to a growing number of studies characterising ROHs in both do-
mesticated and wild animals, driving advances in livestock produc-
tion, evolutionary biology and conservation (Ceballos et al., 2018;
Hewett et al., 2023; Kardos et al., 2018, 2023).

Despite the many advantages of ROHs, their potential has not
yet been fully realised in plants and fungi. In particular, while a hand-
ful of studies have used ROHs to investigate phenotypic traits and
inbreeding in plants (Barragan et al., 2024; Kumar et al., 2021; Pavan
et al., 2021) we are not aware of any studies of ROHs in fungi. Such
studies are urgently needed to improve our understanding of the
dynamics of forest ecosystems in an era of environmental change.
In particular, ROHs could be used to identify patterns of inbreed-
ing related to past demographic events, which would help to inform
contemporary management and conservation. For example, under-
standing past responses to major climatic events such as the last gla-
cial maximum (LGM) could help us to predict responses to ongoing
climate change (Morelli et al., 2016).

The lack of genomic studies of inbreeding in fungi is important be-
cause species such as ectomycorrhizal fungi (EMF) play pivotal roles
in forest ecosystems. For example, they participate in nutrient cycling
and soil carbon sequestration, and they promote tree growth and en-
hance resilience to environmental stress (Tedersoo et al., 2020). Thus,
inbreeding and the loss of genetic diversity due to environmental
change could potentially impact forest health not solely through plants,
but also through fungi, but this has never been investigated. One rea-
son for the lack of studies of ROHs in fungi could be that inbreeding
research in these organisms has typically focused on the special case
of selfing, where spores from the same genet cross to produce a via-
ble dikaryon (Billiard et al., 2011). In fungal sexual outcrossing, mating
compatibility is determined by alleles carried at one (bipolar mating
systems) or two (tetrapolar mating systems) independent loci. For two
haploid individuals to successfully mate, they must carry different al-
leles at these mating loci, subsequently generating diploids (or dikary-
ons) with heterozygous mating types (Raudaskoski & Kothe, 2010).
Hence, mycological theory has long considered tetrapolar species to
be less prone to selfing, as only 25% of spores generated by one indi-
vidual will be cross-compatible (Billiard et al., 2011). However, this may
only be true in the absence of strong selection and local adaptation,
and when many niches are available (Giraud et al., 2010), which is not
always the case in the context of host-dependent organisms like EMF.
Furthermore, inbreeding can go beyond selfing, as it also occurs due
to the inheritance of IBD haplotypes dating back either a few or many
generations. The latter is important because it represents the legacy
of major historical events such as the LGM.

Population genetic theory and empirical studies suggest that
the LGM had a profound influence on many species of plants and
animals inhabiting the northern hemisphere, shaping contemporary
distributions as well as levels of genetic diversity and inbreeding
(Hewitt, 2000). Around the peak of the LGM, many species experi-
enced strong bottlenecks in small, isolated refugia, leading to a de-
crease in genetic diversity and an increase in homozygosity. Further
diversity was subsequently lost through successive founder events
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as the ice retreated and populations recolonised newly available hab-
itats. However, the size and locations of the glacial refugia remain
controversial (Tzedakis et al., 2013). For example, Hewitt (1999) ar-
gued for a small number of southerly refugia in Europe, whereas re-
cent studies have uncovered evidence for a mosaic of refugia across
a diversity of latitudes (Magri, 2008; Magri et al., 2006). While the
distribution of fungi during the LGM is poorly characterised, it is
likely that fungi associated with plants such as EMF tracked the geo-
graphical distributions of their hosts and were thus relegated to re-
fugia during forest range contractions. However, empirical evidence
from the fungal perspective is currently lacking, while the majority
of studies of fungi to date have used small numbers of genetic mark-
ers to quantify genetic diversity, which provide insufficient resolu-
tion to resolve ROHs. Hence, population genomic studies of fungi
are essential to address a major knowledge gap in the context of
current global efforts to understand the resilience and adaptation of
forests to large climatic events (Ibafez et al., 2019).

Boletus edulis Bull. is arguably the most important commercially
harvested wild mushroom. It has a broad geographical distribution
across Eurasia and North America, where it forms obligate mycor-
rhizal associations with the dominant northern hemisphere forest
tree species (Tremble, Brejon Lamartiniére et al., 2023). However,
the population dynamics of this species remain poorly understood.
Globally, seven distinct and largely non-overlapping lineages have
been described, five restricted to North America, one spanning both
North America and boreal Asia, and one in Europe (Tremble, Brejon
Lamartiniére et al., 2023; Tremble, Hoffman & Dentinger, 2023).
These lineages split 1.2-2.6 million years ago and show high levels
of genomic divergence, despite some of them being sympatric in
parts of North America and the presence of occasional gene flow
(Tremble, Brejon Lamartiniére et al., 2023). On a large geographi-
cal scale, within-lineage structure is limited (Tremble, Hoffman &
Dentinger, 2023), while on a fine geographical scale, genetic diver-
sity varies in relation to woodland age, with multiple close relatives
being found in younger forest patches, indicating restricted disper-
sal and a high potential for inbreeding (Hoffman et al., 2020).

Here, we used whole genome resequencing data (Tremble,
Hoffman &amp; Dentinger, 2023) to characterise ROHs across
all seven B. edulis lineages. Our dataset covers a broad latitudinal
gradient, from the tropics to the Arctic tundra, as well as an eleva-
tional range spanning over 2500 m (Figure 1a). This sampling design
allowed us to characterise global patterns of inbreeding as well as
to investigate the best predictors of inbreeding among a set of geo-
graphical and ecological variables. We hypothesised (i) that ROHs
would reveal evidence for inbreeding in at least some individuals and
lineages and (ii) geographical and ecological proxies of past climatic
conditions would explain variation in inbreeding, reflecting previ-
ously described patterns in B. edulis hosts (Anderson et al., 2006;
Magri, 2008). Specifically, we expected inbreeding levels to increase
with latitude, elevation and low predicted habitat suitability during
the LGM; Finally, we hypothesised that (iii) ROH length distributions
would reflect past climatic events, with a large proportion of short
ROHs reflecting ancient common ancestry.
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2 | MATERIALS AND METHODS

2.1 | Genomicdata

We analysed whole genome resequencing data from a total of 225
sporocarps (Tremble, Hoffman & Dentinger, 2023) using the work-
flow shown in Figure S1. These samples originated from field cam-
paigns covering Alaska, Utah, Germany, the United Kingdom and
Guatemala, as well as from museum collections from Colorado,
the West Coast and the East Coast of North America, Scandinavia,
Iceland, the Mediterranean Coast and Russia. In a previous study,
these 225 samples were classified into seven distinct B. edulis line-
ages using a summary coalescent phylogenomic approach (Tremble,
Hoffman & Dentinger, 2023). The resulting dataset comprises 29
samples from the Alaska (AK) lineage, 27 from the British Columbia
(BC) lineage, 26 from the Colorado (CO) lineage, 52 from the
European (EU) lineage, 47 from the West Coast of North America
(WC) lineage, 33 from the East Coast of North America (EC) lineage
and 11 from the Guatemala (GU) lineage.

2.2 | Genotyping
In order to evaluate broad-scale patterns of population structure
and relatedness, we mapped the reads from each sample to the
common pseudo-chromosomal reference genome (BD747 from WC
lineage) using the mem algorithm of bwa v0.7.13 (Li, 2013) with the
default settings. Single nucleotide polymorphisms (SNPs) were then
called with GATK v4.4.0.0 (McKenna et al., 2010) using the default
settings. The resulting dataset was pruned to retain only SNPs with
minor allele frequency (MAF)20.1, depth of coverage 210, missing
data <10% and mapping quality 230, and we removed indels using
the following command in Vcftools v0.1.17 (Danecek et al., 2011):
‘--remove-indels --minDP 10 --minQ 30 --max-missing 0.9 --maf 0.1".
For the analysis of inbreeding, we sought to minimise any poten-
tial biases inherent in mapping the reads from different lineages to
a common reference. We observed that, across all of the lineages,
rates of mapping success were significantly higher and the propor-
tion of uncalled sites was significantly lower when mapping the reads
to the own lineage-specific reference in comparison to the common
reference (Table S1). This is to be expected given the high genetic di-
vergence of the lineages, but could lead to issues calling ROHs based
on the common reference, as missing sites might result in fewer
ROHSs being detected with our conservative approach (Thorburn
et al., 2023). We therefore mapped the reads from each sample
to the lineage-specific reference genomes described by Tremble,
Brejon Lamartiniére et al. (2023): YSU-09856 (N50=184 kbp) for
the AK lineage, WTU-68809 (N50=130 kbp) for the BC lineage,
BD-953 (N50=2329 kbp) for the CO lineage, C-F-109468 (N50=170
kbp) for the EU lineage, DUKE-0193972 (N50=161 kbp) for the EC
lineage, KST39 (N50=238 kbp) for the GU lineage, and the pseudo-
chromosomal reference BD747 for the WC lineage. We retained all
sites with a depth of coverage 29, missing data <10% and mapping
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FIGURE 1 Patterns of genomic relatedness and inbreeding among seven globally distributed Boletus edulis lineages. (a) Sampling locations
of 225 sporocarps across the northern hemisphere. The lineages are colour-coded as shown in the legend. (b, c) Results of the principal
component analysis showing variation in the first four principal components. (d) Violin plots of individual inbreeding coefficients (FROH)

for each lineage. Individuals are denoted by points and the shapes represent lineage-specific kernel densities of F,, values. The map was

retrieved from https://www.naturalearthdata.com.

quality 230, and we removed indels using the following command in
Vcftools: ‘--remove-indels --minDP 10 --minQ 30 --max-missing 0.9".
No minor allele frequency pruning was performed according to the
best practices for ROH calling (Meyermans et al., 2020).

2.3 | Relatedness analysis and clone correction

In order to characterise the relatedness structure of our dataset and to
check for the presence of inadvertently resampled clones, we calcu-
lated pairwise kinship coefficients separately for each lineage using the
KING algorithm (Manichaikul et al., 2010) with the -relatedness2 com-
mand from Vcftools. Pairs of samples with kinship coefficients equal
to or greater than the conservative default threshold of 0.354 were

classified as clones according to the software's best practices. Where
clones were present, we randomly selected one sample to represent
the individual genet for inclusion in subsequent analyses.

2.4 | Population structure and inbreeding

To contextualise our inbreeding analyses, we first characterised pat-
terns of global population structure. For this, we used the final clone-
corrected dataset of 209 individuals mapped to the best common
reference. We implemented principal component analysis (PCA) of
the genomic dataset, which comprised 152,132 polymorphic, biallelic
SNPs, using pcadapt 4.3.3 (Luu et al., 2017). This software takes miss-
ing data into account in the computation of the Z-scores, such that
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the larger the quantity of missing data, the smaller the Z-score (Luu
et al., 2017). We then quantified inbreeding using the lineage-specific
vcf files. Specifically, we computed F;_ using a dataset of 50,000 ran-
domly selected linkage disequilibrium-pruned (rP<.2) SNPs within
Plink v1.90b6.21 (Purcell et al., 2007) and characterised ROHSs using
the Bcftools 1.11 -roh function (Narasimhan et al., 2016). Only ROHs
>1kbp were considered. While this threshold is smaller than the mini-
mum length thresholds typically used in mammalian studies, it was
adapted to take into consideration the much smaller genome length
and the recombination rate estimated from a well-studied agarycomy-
cete (Gao et al., 2018; Larraya et al., 2000). To control for differences in
the contiguity of the lineage-specific reference genomes, we standard-
ised the ROH measures according to mapping coverage. Specifically,
we used coverage bed files computed by the Bedtools 2.27.1 (Quinlan
& Hall, 2010) command ‘genomecov’ for each individual's bam file as
masks in order to restrict ROH calling to only those regions of the ge-
nome where the coverage was sufficiently high (=5) to determine zygo-
sity. To quantify individual inbreeding, we then calculated the genomic
inbreeding coefficient F,, as the proportion of the genome in ROHs.
For this, the standardised ROH dataset was used to calculate for each

individual the proportion of the mappable genome in ROH as follows:

Y length of standardized ROHs (bp)
Y length of mappable genome (bp)

FROH=

To estimate the antiquity of the identified ROHs, we utilised the
formula whereby expected ROH lengths follow an exponential dis-
tribution according to 1/2g Morgans (Howrigan et al., 2011), with
g being the number of generations since the most recent common
ancestor. For this, we used a recombination rate of 34kb/cM esti-
mated from Pleurotus spp. (Gao et al., 2018; Larraya et al., 2000).

2.5 | Elevation and LGM habitat suitability

Elevation data were downloaded from the Global Land One-
kilometre Base Elevation project website (Hastings et al., 1999).
GLOBE DEM files were converted into tif raster files using QGIS
3.28.1 and the elevation value (in metres) for each of our sampling
locations was extracted from the tif files using the package raster
3.6.3 (https://CRAN.R-project.org/package=raster). To estimate the
habitat suitability of our sampling locations during the LGM, we used
MaxEnt v.3.4.1 (Phillips et al., 2006). This software estimates the
habitat suitability of a given locality based on available climatic data,
predicting past species distributions based on sampling locations as
the only input. We used the default settings with the 19 Bioclim2
variables modelled to have occurred during LGM (~22 KYA) (Fick &
Hijmans, 2017) at the finest resolution available (30-s, ~1km?) and
ran the models with 100 replicates. The fit of each resulting model
was assessed from area under the receiver-operator curves (AUCs).
For each lineage, we used the mean of the 100 replicates to repre-
sent the predicted LGM habitat suitability and extracted the values
corresponding to each sampling location.
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Statistical analyses

2.6 |

To identify those forces contributing towards global and local pat-
terns of inbreeding, we performed two sets of analyses. First, we
conducted an exploratory analysis of the data in order to identify
inter-correlated variables and to determine those factors shap-
ing variation within and among lineages. For this, we computed a
PCA of the continuous variables Fg,,, elevation, latitude and pre-
dicted LGM habitat suitability, while including lineage as a supple-
mentary categorical variable. This analysis was implemented using
the r packages factomineR and factoextra (Lé et al., 2008). Then,
to formally test for the effects of elevation, latitude and predicted
LGM habitat suitability on inbreeding, we implemented post hoc
Beta regressions separately for each predictor variable, with and
without lineage included as a random effect, using the packages
betareg (Cribari-Neto & Zeileis, 2010), Ime4 (Bates et al., 2015) and
glmmTMB (Brooks et al., 2017).

3 | RESULTS

To investigate inbreeding and its correlates in an ecologically and
commercially important wild mushroom, we analysed whole ge-
nome resequencing data from 225 B. edulis sporocarps belonging to
seven globally distributed lineages (Figure 1a; Tremble, Hoffman &
Dentinger, 2023). As an initial check, we evaluated the relatedness
structure of the dataset and searched for the presence of clones.
Levels of relatedness were low for all but one of the lineages, with
mean pairwise kinship coefficients being below 0.042 and the ma-
jority of samples being unrelated (Table 1). The exception was the
GU lineage, for which most pairs of individuals were classified as
third-degree relatives and the mean kinship coefficient was 0.059.
A total of 18 clonal pairs were identified, primarily from the WC
and BC lineages (Table 1). Clone correction left a final dataset of
209 individual genets, comprising 29 from the AK lineage, 23 from
the BC lineage, 24 from the CO lineage, 42 from the WC lineage,
31 from the EC lineage, 49 from the EU lineage and 11 from the
GU lineage. In line with the results of Tremble, Brejon Lamartiniére
et al. (2023) and Tremble, Hoffman and Dentinger (2023), the
lineages were clearly resolved in the PCA with the exception of
CO and GU, which clustered together in the four first dimensions
(Figure 1b,c).

3.1 | Global patterns of inbreeding

We found clear evidence for inbreeding, with genomic inbreeding
coefficients (F,q,,) reaching up to 0.21. By contrast, F¢ values were
close to or below zero (Figure S2). Considerable variation in Fron
was present both among and within lineages (Figure 1d). AK and WC
exhibited both the highest mean F, values (0.13 and 0.06 respec-
tively) and the greatest within-lineage variation (SD=0.05 and 0.03
respectively). The EU lineage was the least inbred (mean F,,=0.01)
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Relatedness AK BC co EC EU
Clones 0 5 3 2 3

1st degree 0 0 1 1 0

2nd degree 8 0 4 1 2

3rd degree 24 2 24 4 8
Unrelated 374 399 293 520 1311
Mean Phi -0.145 -0.171 -0.025 -0.075 -0.127

TABLE 1 Summary of relatedness

cu LS patterns among 225 Boletus edulis whole
0 5 genomes.
1
1 3
45 28
8 1043
0.059 -0.11

Note: The top row shows the number of clonal pairs in each lineage. Subsequent rows show the
numbers of pairs of individuals assigned to various relatedness categories. The bottom row shows
average pairwise relatedness for each of the lineages. For the names and sampling localities of the

lineages, see Figure 1a.
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and showed the least within-lineage variation (SE=0.01). The re-
maining lineages had intermediate levels of inbreeding (mean
Fron=0.03,0.02, 0.03 and 0.04 for the BC, CO, EC and GU lineages
respectively) and within-lineage variation (SD=0.02, 0.01, 0.01 and
0.02 for the BC, CO, EC and GU lineages respectively). There was no
obvious concordance between inbreeding levels and the underlying
population genetic structure. For example, the AK and EC lineages
clustered together in the PCA (Figure 1b,c) but differed substantially
in their levels of inbreeding (Figure 1d).

3.2 | Correlates of inbreeding

To evaluate general trends and to capture the most important re-
lationships in our dataset, we computed a PCA based on Fq,,, el-
evation, latitude and predicted LGM habitat suitability (Figure 2

2

and Figure S3). The GU lineage was excluded from this analysis as
it did not have enough sampling locations to generate LGM habitat
suitability predictions. This approach decomposed the total varia-
tion into uncorrelated components, allowing clear visualisation of
the major axes of variation (Figure 2), as well as the variables load-
ing upon them (Figure S4). The first two PCs captured over 70% of
the total variation. Latitude was strongly negatively correlated with
the first PC (r=-0.90, p<.001) whereas elevation was strongly
positively correlated with the first PC (r=0.84, p<.001). This op-
position highlights the heterogenous nature of our dataset, with
samples from the lineages CO and WC being located at the highest
elevation and the lowest latitude, while samples from the EU and
AK lineages occur at high latitude but low elevation. Inbreeding was
strongly positively correlated with the second PC (r=0.78, p<.001)
while predicted LGM habitat suitability showed a strong negative
correlation with the second PC (r=-0.59, p<.001). This suggests
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that the most inbred individuals originate from those locations with
the lowest predicted habitat suitability during the LGM. Elevation
was also positively correlated with PC2 (r=0.38, p<.001) suggest-
ing that genets sampled from high elevations tend to be more in-
bred and are associated with lower predicted LGM habitat suitability
values. Furthermore, inbreeding was negatively correlated with PC1
(r=-0.22, p=.002) suggesting that individuals tend to be more in-
bred at higher latitudes.

To formally test our hypothesis based on insights from the
PCA, we used Beta regressions to evaluate the relationships be-
tween inbreeding, elevation, latitude and predicted LGM habitat
suitability, both with and without lineage included as a random
effect (see 2. Materials and Methods for details). The best predic-
tor of inbreeding was elevation (z=2.7, p=.007), but only when
excluding lineage as a random effect (Table S2), reflecting high
levels of among-lineage variation. Post hoc regression analyses
revealed an overall tendency for elevation to be positively asso-
ciated with inbreeding across the majority of lineages (Figure 3a),
with the strongest relationship being found for the EU lineage
(p<.003). The second strongest predictor of inbreeding was lat-
itude (z=-1.987, p<.05) but only when lineage was included as a
random effect (Table S3) reflecting the opposition of the positive
global effect and lineage-specific effects. Moreover, contrasting
patterns were found across the lineages, with AK and GU showing
significant negative relationships (z=-3.18, p<.002 and z=-4,
p <.001 respectively) while BC and EC showed positive but non-
significant trends (Figure 3b). Finally, predicted LGM habitat suit-
ability did not explain a significant proportion of the variation in
inbreeding, regardless of whether or not lineage was included as
arandom effect (Table S4), although many of the lineages showed

weak but non-significant negative trends (Figure 3c).

3.3 | Antiquity of ROHs

To estimate the antiquity of genomic inbreeding, we characterised
lineage-specific ROH length distributions. Across all seven lineages,
the majority (97.5-99.5%) of the ROHs were shorter than 20kb in
length. ROHSs larger than 50kb were ubiquitous but less common,
while larger ROHs in the range of 50-175kb were only occasion-
ally found (Figure S5). This inference appears not to be limited by
the contiguity of the lineage-specific references, as 76.6-99.2% of
the scaffolds across lineages were sufficiently large to call ROHs of
50kb or longer (Figure Sé). To summarise variation in the antiquity
of ROH among lineages, we converted the length of each ROH into
the estimated number of generations since the most recent com-
mon ancestor (TMRCA) according to Howrigan et al. (2011) using a
recombination rate estimate from another agarycomycete species
(Gao et al., 2018; Larraya et al., 2000). We found a diversity of ROH
lengths spanning from 1kb (corresponding to approximately 1700
generations ago) to 175kb (corresponding to approximately 9 genera-
tions ago). To investigate patterns of ROH ancestry in our dataset, we
grouped the ROHs into categories representing three different time
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FIGURE 3 Results of post hoc analyses of the effects of (a)
elevation, (b) latitude and (c) predicted last glacial maximum habitat
suitability on genomic inbreeding levels. Individual sporocarps
(closed points) and lineage-specific Beta regressions (solid lines)
are colour-coded as shown in the legend. The asterisks indicate
statistically significant (alpha=0.05) Beta regressions.

periods. First, we defined ‘recent common ancestry’ as ROHs dating
back approximately 9-50 generations ago. We used a relatively nar-
row generational range to ensure that this category captured only
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the most recent inbreeding events in our dataset. Next, we defined
‘intermediate common ancestry’ as ROHs dating back approximately
50-200 generations ago, and ‘ancient common ancestry’ as ROHs
dating back approximately 200-1700 generations ago. Successively
broader generational ranges were used for these categories because
uncertainty in the relationship between ROH length and TMRCA in-
creases with longer coalescent times due to Mendelian sampling and
the stochasticity of recombination (Pemberton et al., 2012). Finally,
we computed the percentage of the mappable genome IBD sepa-
rately for each lineage and category.

Figure 4 shows that ROHs corresponding to 9-50 generations
ago are extremely rare, only being found in a handful of individu-
als from the lineages BC, EC and GU. We did not find any evidence

even selfing, which should be manifested as longer ROHs dating
back fewer generations. Across all of the lineages, the majority of
ROHSs corresponded to around 200-1700 generations ago, which
is indicative of ancient common ancestry. ROHs corresponding to
50-200 generations ago were present in all of the lineages, but were
especially abundant in the AK lineage, probably reflecting the high
latitude of the respective sampling locations, which would likely

have taken thousands of years to recolonise after the LGM.

4 | DISCUSSION

Although genomic approaches have revolutionised the study of

of contemporary inbreeding, such as matings between close kin or inbreeding in animals (Ceballos et al., 2018; Kardos et al., 2018,
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2023), the application of ROHs to plants has been more limited
(Barragan et al., 2024; Kumar et al., 2021; Pavan et al., 2021) and
we are not aware of any ROH studies in fungi. We therefore con-
ducted the first genomic survey to our knowledge of ROHs in a
wild, globally distributed fungus. We uncovered substantial varia-
tion in inbreeding both among and within lineages, which appears
to mainly reflect ancient rather than recent common ancestry.
Furthermore, much of the variation in inbreeding could be ex-
plained by geographical and ecological proxies of past climatic
conditions, consistent with prevailing theory (Hewitt, 2000) and
empirical studies of the dominant forest tree species of the north-
ern hemisphere (Anderson et al., 2006; Magri et al., 2006; Roberts
& Hamann, 2015). Our study thereby uncovers the genomic legacy

of major climatic events on a forest symbiont.

4.1 | Inbreeding in Boletus edulis

One explanation for the lack of studies using ROHs to quantify
genomic inbreeding in EMF is that most EMF species lack high-
quality reference genomes (Loeffler et al., 2020). A major advantage
of using B. edulis is that both a single highly contiguous pseudo-
chromosomal reference genome and multiple lineage-specific ref-
erence genomes are available. We used the former as a common
backbone for broad-scale analyses of population structure and re-
latedness. However, among-lineage variation in mapping success to
the common reference together with a global tendency for mapping
success to be higher to the own lineage-specific reference moti-
vated us to use the lineage-specific references for the inference of
inbreeding. To control for variation in the total length and contiguity
of the lineage-specific references, we standardised the ROH calling
according to mapping depth and assembly length. In addition, we
used the software recognised as being the least prone to false posi-
tive ROH discovery (Narasimhan et al., 2016). Thus, our results are
conservative and the variation we observe in inbreeding should be
minimally impacted by sequencing or bioinformatic artefacts.

Despite our conservative approach, we found clear evidence for
inbreeding in B. edulis, with F.,, being as high as 21%. In contrast
to previous studies reporting significant F; values in fungal popu-
lations (Abe et al., 2017; Bergemann & Miller, 2002), we found that
F,s values were consistently around or below zero in B. edulis. This
is likely because F ¢ predominantly captures inbreeding due to con-
temporary population substructure, whereas ROHs in this species
appear to reflect much more ancient common ancestry. Further
studies of EMF are needed to generalise our results and to learn
more about the magnitude and antiquity of inbreeding and its rele-
vance to fungal population dynamics, including resilience to environ-
mental change and commercial harvesting.

In yeast, regions of homozygosity have also been shown to arise
via a mechanism that is independent of inbreeding involving mitotic
mutations (Smukowski Heil, 2023). The resulting loss of heterozy-
gosity (LOH) could potentially be conflated with ROHs. However,
LOHs are generated through mitotic recombination in diploid (more
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often in polyploid) nuclei (Dutta et al., 2022), a process that should
be less common in Basidiomycete species that predominantly
persist as dikaryons such as B. edulis, since both haploid nuclei go
through mitosis separately (Hiltunen et al., 2022). Therefore, we
believe the ROHs we detected in our study are true signals of ge-
nomic inbreeding, which is supported by the observation that geo-
graphical and ecological variables explain a significant amount of

the variation in Fq,,.

4.2 | Global patterns of inbreeding

The broad sampling coverage of our study allowed us to uncover
appreciable variation in inbreeding both among and within lineages.
The best predictor of variation in inbreeding in B. edulis was eleva-
tion, with positive associations between Fg,, and elevation being
found in both the PCA and the regression analysis of the global
dataset excluding lineage as a random effect. Including the random
effect likely removed statistical significance as much of the varia-
tion in elevation occurs among lineages and thus, the standard error
of the pooled estimate was very high. However, positive associa-
tions between inbreeding and elevation were still visible within in-
dividual lineages in the post hoc analysis. Furthermore, individually
significant associations were observed in the EU and GU lineages,
although the latter appears to be driven by a single outlier. As argued
by Hewitt (1996) and Willis et al. (2004), a globally positive relation-
ship between elevation and inbreeding likely reflects the impact of
past climatic events, primarily the LGM, during which lower eleva-
tion sites would have supported larger host tree populations (Gugerli
et al., 2001) and hence, historically larger EMF populations.

We also found an effect of latitude on inbreeding, although this
relationship appears more complex. Specifically, the PCA revealed
a positive relationship between inbreeding and latitude, which was
reflected by a positive but non-significant global trend for higher
latitude populations to be more inbred in the Beta regression
excluding lineage as a random effect. However, latitude became
statistically significant when including lineage as a random effect,
exposing a clear case of Simpson's paradox (Simpson, 1951). Thus,
the global positive relationship appears to be largely driven by the
AK lineage, which has the highest level of inbreeding and is located
at the highest latitude, while local trends were predominantly neu-
tral or negative. For example, the AK lineage exhibited a strong
and highly significant negative association between latitude and
inbreeding in the post hoc analysis, while the EU lineage exhib-
ited no relationship. Long-standing theory on the impacts of glacial
cycles argues that higher latitudes supported smaller populations
during the LGM and/or had to be recolonised from southerly refu-
gia (Hewitt, 1999; Taberlet et al., 1998). In theory, this should be
manifest as a positive relationship between inbreeding and lati-
tude (Dussex et al., 2020; Niedziatkowska et al., 2016), which is
the opposite to our results for the AK lineage. However, recent
discoveries of central refugia in Europe (Magri et al., 2006) and a
northern refugium in North America (Brubaker et al., 2005; Shafer
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et al., 2010), together with evidence for postglacial recolonisation
routes being more complex than previously thought (Magri, 2008;
Mee & Moore, 2014) have led to this view being revised. In particu-
lar, the presence of a large refugium in the north of Alaska (Beringia)
could explain the negative relationship between inbreeding and lat-
itude in the AK lineage, as postglacial recolonisation in this region
of North America likely progressed from north to south (Brubaker
et al., 2005). Similarly, the lack of a relationship between latitude
and inbreeding in the EU lineage is consistent with the presence
of multiple central European (micro-) refugia (Magri, 2008) and
complex multidirectional postglacial colonisation pathways (Magri
et al., 2006). It also refutes the notion of a single large refugia in
the European southern peninsula (Hewitt, 1999), which aligns with
the results and conclusions of several other recent studies of the
main tree hosts of B. edulis (Gomoéry et al., 2020; Magri, 2010;
Willis & Vanandel, 2004).

Predicted LGM habitat suitability was also strongly negatively
correlated with the second component of the PCA, while inbreed-
ing was strongly positively correlated. At the same time, predicted
LGM habitat suitability was moderately positively correlated with
the first component of the PCA, while inbreeding showed a weak
negative correlation. We interpret this opposition on both PCs as
being suggestive of a negative association between inbreeding and
LGM habitat suitability. However, none of the Beta regressions were
statistically significant. One explanation for this could be that the
PCA was able to capture a weak overall relationship mainly driven
by AK, which exhibits by far the lowest LGM suitability values whilst
also being the most inbred lineage.

4.3 | Antiquity of inbreeding

Since haplotypes are broken down at each successive generation by
recombination, ROHs can be dated back to TMRCA based on their
length while making certain assumptions about the recombination
rate and generation time. Despite finding genomic evidence for the
presence of closely related individuals in the majority of B. edulis lin-
eages, ROHs reflecting recent common ancestry (50 or fewer gen-
erations ago) were conspicuously absent from all but a handful of
individuals from just three lineages. Hence, it appears that inbreeding
between close relatives and/or selfing rarely occur in B. edulis. This
might be expected given the high diversity of mating alleles found in
our study populations (Tremble, Hoffman & Dentinger, 2023). Thus,
our results suggest that the mating system of B. edulis may be ef-
ficient at preventing consanguineous matings.

By contrast, short ROHs dating back approximately 200-1700
generations ago were ubiquitous. Precise dating of these IBD seg-
ments is not possible because generation time estimates are not
currently available for any EMF. However, multiple geographi-
cal and ecological proxies of LGM conditions explain a significant
amount of the variation in genomic inbreeding in B. edulis, suggest-
ing that the ROHs may originate from this period. If indeed some of
these ROHs date back to the LGM, then the generation time of B.

edulis would be somewhere in the order of 10years. We believe this
is plausible for a long-lived mushroom (field observations indicate
that B. edulis individuals can fruit for at least 15years, W. Amos,
pers. comm.) although extensive monitoring of entire populations
over many decades would be required to obtain a more precise gen-
eration time estimate.

While short ROHs were abundant and large ROHs were rare
across all of the lineages, ROHs of intermediate length (dating back
approximately 50-200 generations ago) were present in varying
amounts in different lineages. This may testify to variation among
the lineages in post-glacial recolonisation patterns. For example,
the AK lineage, which carries the greatest proportion of ROHs of
intermediate length, is present at high latitude and would therefore
have been recolonised potentially hundreds of generations after the
more southerly lineages. Thus, these IBD segments could poten-
tially be explained by smaller effective population sizes and succes-
sive founder events during the hundreds to thousands of years that
followed the LGM. Alternatively, another hypothesis could be that,
since the AK lineage experiences the most hybridisation with other
lineages (Tremble, Brejon Lamartiniére et al., 2023), the divergence
between these lineages could lead to underdominance, increasing
apparent inbreeding.

By contrast, the EU lineage had the lowest representation of
intermediately sized ROHs, probably reflecting more rapid post-
glacial recolonisation. Interestingly, the EU lineage is also consid-
ered to be the least host-specialised of the lineages based on its
symbiosis gene content (Tremble, Brejon Lamartiniére et al., 2023;
Tremble, Hoffman & Dentinger, 2023). Host generalism may have
contributed to differences in recolonisation patterns, as the ability
to form associations with multiple tree species may increase niche
availability, enabling faster recolonisation and larger effective pop-
ulation sizes. This generalist advantage during strong perturbations
is a popular concept in the context of both mutualists and parasites
(Dennis et al., 2011).

In conclusion, we used a genomic approach based on ROHs
to investigate inbreeding in a wild mushroom. We found that in-
breeding is widespread among B. edulis populations from across
the northern hemisphere, with among- and within-lineage varia-
tion being explained by elevation, latitude and, to a lesser extent,
predicted LGM habitat suitability. These patterns lend support to
theoretical and empirical studies of the impact of the LGM on for-
est ecosystems from the perspective of a key mutualist and forest
engineer. Overall, our study emphasises the potential of population
genomics to deepen our understanding of the ecology and popula-

tion biology of fungi.
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