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Supplementary tables

LI SG BJ IK
LI 0.092| 0.108| 0.172
SG 0.111| 0.182
B 0.184
IK

Table S1: Fst values for the analyzed islands Fst calculations were conducted in ANGSD,
using SNP positions which were present in at least 4 individuals in each colony.

Island(s) Total sites included in SFS
South Shetlands 25,790,417
South Georgia 24,157,307
Bouvetgya 23,185,013
lles Kerguelen 31,037,895
South Shetlands-South Georgia 16,267,285
South Shetlands-Bouvetgya 16,186,781
South Shetlands-lles Kerguelen 16,227,791
South Georgia-Bouvetgya 16,112,784
South Georgia-lles Kerguelen 16,140,787
Bouvetgya-lles Kerguelen 16,023,400
Four population 15,100,284

Table S2: Number of DNA sites included in each of the analyzed SFS

Division gen: 10 years gen: 8 years | gen: 10 years gen: 8 years
mut: 1.2%10® | mut: 1.2*10® | mut: 1*10°8 mut: 1*108

SS-SG-BI | 6749 8100 5400 6480

IK 15884 19061 12707 15249

Table S3: Effects of varying parameter values for generation time (gen) and mutation rate
(mut) on estimated population divergence times (in years) for the starlike model. Varying the
values used for generation time and/or mutation rate within reasonable bounds (from 10 to 8

years, and from 1.2*10-8 to 1*10-8, respectively) did not change the overall patterns of the
timing of population divergences relative to the LGM ice volume peak The first column
shows the results presented in the main article (generation time of 10 years and mutation rate
of 1.2*10-8).



Supplementary figures
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Figure S1: All demographic inference models — with each island and analysis method as a
separate panel to allow for better visualization of confidence intervals. Connected points
indicate median values, shaded areas indicate the corresponding 95% confidence intervals
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from bootstrap replicates (Stairway & CubSFS — 200, Epos — 2000). Note that each panel is

confidence intervals are hidden behind the median value points.

plotted on a different y-axis scale, to maximize the detail visible, and that some narrow
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Figure S2: Model fits for pairwise models with and without migration. Note that
migration does not have much influence on the model fit.
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Distribution of Model Run Likelihoods
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Figure S4: Likelihood distribution for moments model runs — both starlike and bifurcating
models.
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Figure S5: Model fit runs — population split timing — starlike model, showing all runs (2,500),
and the highest likelihood 200 runs (inset). In dark grey — time (from present) to divergence of
the South Shetlands, South Georgia, and Bouvetgya, in light grey — time (from present) to
divergence of Iles Kerguelen



Model-fit run (ordered by likelihood)
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Scripts

In the interests of brevity, where the same calculations were performed for each of the four
island colonies, only the scripting for South Georgia is shown. Similarly, for all analyses
multiple parameter sets were tested, but only one set is shown.

Site Frequency Spectrum generation in ANGSD
Bash script

#!/bin/bash

#Job name:

#SBATCH --job-name=SFS_for_demography
#

# Project:

#SBATCH --account=NN9515K

#

# Wall clock limit:

#SBATCH --time=12:00:00

#

#Max memory usage per core (MB):
#SBATCH --mem-per-cpu=5G

#

#Number of cores:

#SBATCH --cpus-per-task=5

## Set up job environment:

source /cluster/bin/jobsetup

module purge # clear any inherited modules
set -0 errexit # exit on errors

## make SFS files for each colony individually to use for demographic estimation
module load xz

for colony in LI SG BI KI

do

programs/angsd/angsd -bam AFS_ddRAD _analyses/"$colony"” AFS_bamlist.filelist -
doSaf 1 -out AFS_ddRAD_analyses/2019/"$colony" AFS_SFS -anc
Reference_sequences/Seals/Arctocephalus_gazella.fasta -GL 2 -P 5 -minMapQ 1 -
minQ 20 -fold 1



programs/angsd/misc/realSFS
AFS_ddRAD_analyses/2019/"$colony" AFS_SFS.saf.idx >
AFS_ddRAD_analyses/2019/"$colony" AFS_SFS_complete
done

#Make a fourway SFS — note this was originally a separate script, as the Abel
computing cluster was phased out, and we migrated to the new Saga computing
cluster. Hence the slightly different file structure. Additionally in the fourway SFS,
unfolded spectra were used as the folding format of ANGSD differs from that expected
by moments. This was subsequently folded in moments, as recommended by the
program authors.

Programs/ANGSD2/angsd/misc/realSFS
AFS_ddRAD_analyses/2019/K1_AFS_unfolded.saf.idx
AFS_ddRAD_analyses/2019/SG_AFS_unfolded.saf.idx
AFS_ddRAD_analyses/2019/BI_AFS_unfolded.saf.idx
AFS_ddRAD_analyses/2019/L1_AFS_unfolded.saf.idx>

AFS _ddRAD_analyses/2019/IK_SG_BO_LI _4d_SFS_unfolded.sfs



Stairway

#South Georgia _demography blueprint file, longterm

#input setting

popid: SG_AFS_longterm_demography # id of the population (no white space)

nseq: 26 # number of sequences

L: 24157307 # total number of observed nucleic sites, including polymorphic and

monomorphic

whether_folded: true # whether the SFS is folded (true or false)

SFS: 70137.94244  34262.07326 24407.76026 18495.96525 14527.33497
11965.19162 9956.172795 8728.44419 8342.75455 7223.10188
7167.079538 6587.423885 4869.011751

# snp frequency spectrum: number of singleton, number of doubleton, etc. (separated

by white space)

#smallest_size_of SFS bin_used for_estimation: 1

#largest_size_of SFS_bin_used_for_estimation: 13 # default is nseq/2 for folded SFS

pct_training: 0.67 # percentage of sites for training

nrand: 6 12 20 24 # number of random break points for each try

project_dir: SG_AFS_longterm_demography # project directory

stairway_plot_dir: stairway_plot_es # directory to the stairway plot files

ninput: 200 # number of input files to be created for each estimation

#output setting

mu: 1.2e-8 # assumed mutation rate per site per generation

year_per_generation: 10 # assumed generation time (in years)

#plot setting

plot_title: SG_AFS_longterm_demography # title of the plot

xrange: 0.1,10000 # Time (1k year) range; format: xmin,xmax; "0,0" for default

yrange: 0,0 # Ne (1k individual) range; format: xmin,xmax; "0,0" for default

xspacing: 2 # X axis spacing

yspacing: 2 # Y axis spacing

fontsize: 12 # Font size



CubSFS
R-script

ObsSFS_AFS_LI_rounded<-c(63486, 38840, 27505, 19829, 15525, 13120, 10606,

10062, 9032, 8324, 7829, 7653, 5544)

ObsSFS_AFS_IK_rounded<-c(43437, 32390, 27861, 22196, 18960, 15105, 13907,

12122, 11176, 10159, 9891, 8927, 7738)

ObsSFS_AFS_BO_rounded<-c(46190, 30322, 21354, 17490, 14062, 10695, 10680,
7352, 7585, 9961, 5040, 2442, 9395)

ObsSFS_AFS_SG_rounded<- (70138, 34262, 24408, 18496, 14527, 11965, 9956,
8728, 8343, 7223, 7167, 6587, 4869)

total.nb.sites AFS_LI<- 25790417

total.nb.sites AFS SG<- 24157307

total.nb.sites AFS_BO<- 23185013

total.nb.sites AFS_IK<- 31037895

n.samples_AFS <- 26

require(CubSFS)

set.seed(98765)

#mutation rate

mu <- 1.2*10°(-8)

# generation time

genyr <- 10

TimelnYears <-seq(100,500000,by=100)
nb.boot<- 200

#South Shetlands

results_ AFS_LI_optimal <- estimateCubSFS(ObsSFS_AFS LI _rounded,
n.samples_AFS, n.knots=4,t m=1.25, is.folded = TRUE)

boot AFS LI optimal <-

rmultinom(nb.boot,total.nb.sites AFS_LlI,c(total.nb.sites AFS_LI-
sum(ObsSFS_AFS LI _rounded),ObsSFS_AFS LI _rounded)/total.nb.sites AFS_LlI)
boot AFS LI optimal<-boot AFS_LI optimal[-1,]

boot.res_ AFS_LI_optimal<-apply(boot AFS_LI_optimal, 2, estimateCubSFS,
n.samples=n.samples_AFS, n.knots=4, t m=1.25, is.folded = TRUE)

AFS_plotting_LI_optimal <-
PlotCubSFS(n.samples_AFS,mu,total.nb.sites AFS_LI,genyr,results AFS LI optimal,
boot.res=boot.res_ AFS_LI_optimal,abstime=TimelnYears)

#South Georgia
results AFS_SG_optimal <- estimateCubSFS(ObsSFS_AFS_SG_rounded,
n.samples_AFS, n.knots=4,t m=0.25, is.folded = TRUE)
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boot AFS SG_optimal <-

rmultinom(nb.boot,total.nb.sites AFS_SG,c(total.nb.sites AFS_SG-
sum(ObsSFS_AFS SG_rounded),ObsSFS_AFS_SG_rounded)/total.nb.sites AFS_SG)
boot AFS_SG_optimal<-boot AFS SG_optimal[-1,]

boot.res_ AFS_SG_optimal<-apply(boot AFS_SG_optimal, 2, estimateCubSFsS,
n.samples=n.samples_AFS, n.knots=4, t m=0.25, is.folded = TRUE)

AFS_plotting_SG_optimal <-
PlotCubSFS(n.samples_AFS,mu,total.nb.sites AFS_SG,genyr,results AFS_SG_optim
al,boot.res=boot.res AFS_SG_optimal,abstime=TimelnYears)

#Bouvetgya

results AFS_BO_optimal <- estimateCubSFS(ObsSFS_AFS _BO_rounded,
n.samples_AFS, n.knots=4,t m=1.85, is.folded = TRUE)

boot AFS_BO_optimal <-

rmultinom(nb.boot,total.nb.sites AFS_BO,c(total.nb.sites AFS_BO-
sum(ObsSFS_AFS_BO_rounded),ObsSFS_AFS_BO_rounded)/total.nb.sites AFS_BO
)

boot AFS BO_optimal<-boot AFS_BO_optimal[-1,]

boot.res_ AFS_BO_optimal<-apply(boot AFS_BO_optimal, 2, estimateCubSFS,
n.samples=n.samples_AFS, n.knots=4, t m=1.85, is.folded = TRUE)

AFS_plotting_BO_optimal <-
PlotCubSFS(n.samples_ AFS,mu,total.nb.sites AFS_BO,genyr,results AFS_BO_optim
al,boot.res=boot.res AFS_BO_optimal,abstime=TimelnYears)

#Kerguelen

results AFS_IK_optimal <- estimateCubSFS(ObsSFS_AFS_IK_rounded,
n.samples_AFS, n.knots=16,t_m=2, is.folded = TRUE)

boot_ AFS_IK_optimal <-

rmultinom(nb.boot,total.nb.sites AFS_IK,c(total.nb.sites AFS_IK-
sum(ObsSFS_AFS_IK _rounded),ObsSFS_AFS_IK_rounded)/total.nb.sites AFS_IK)
boot_ AFS_IK_optimal<-boot_AFS_IK_optimal[-1,]

boot.res_ AFS_IK_optimal<-apply(boot_AFS_IK optimal, 2, estimateCubSFsS,
n.samples=n.samples_AFS, n.knots=16, t m=2, is.folded = TRUE)

AFS plotting_IK_optimal <-

PlotCubSFS(n.samples_AFS,mu,total.nb.sites AFS_IK,genyr,results_AFS_IK_optimal
,boot.res=boot.res_ AFS_IK_optimal,abstime=TimelnYears)

11



Epos
Bash script — as formatted for the Saga computer cluster
#!/bin/bash
#
#Job name:
#SBATCH --job-name=epos
#
# Project:
#SBATCH --account=NN9515K
#
# Wall clock limit:
#SBATCH --time=24:00:00
#
#Max memory usage per core (MB):
#SBATCH --mem-per-cpu=5G
#
#Number of cores:
#SBATCH --cpus-per-task=1
#
#Send the output to the epos directory
#SBATCH --output=Programs/epos/L1_epos_complete %j.out

## Set up job environment:

#source /cluster/bin/jobsetup

module purge # clear any inherited modules
set -0 errexit # exit on errors

set -0 nounset # Treat unset variables as errors
module load foss/2019b GSL/2.6-GCC-8.3.0

Programs/sfs/build/bootSfs -i 2000 Programs/epos/data/LI_SFS_for_EPOS |

Programs/epos/build/epos -u 1.2e-8 -E 26 | ~/go/bin/epos2plot >
Programs/epos/results/L1_epos_results_2000bs_complete.dat

12



Moments
All moments scripts are in Python, and are accompanied by a shell script which is in bash, to
allow implementation of the python scripts in the Unix environment.

Scenario definitions

def slightly_fancy_split(params, ns):

#Make a very simple scenario to estimate time of the split between two populations -
before, during, or after LGM

#Assume both populations are of constant size - but may be of different sizes from
each other

#params = time - time since populations split (in coalescent units), f = fraction of
initial population which goes to pop 1 after splitting

#input SFS in order pop2, pop 1

#ns=[n0, n1 ] - sample sizes

time, f = params

sts = moments.LinearSystem_1D.steady_state_1D(ns[0] + ns[1])
fs = moments.Spectrum(sts)

fs = moments.Manips.split_1D_to_2D (fs, ns[0], ns[1])
fs.integrate([f, (1-f)], time)

return fs

def four_AFS_populations (params, ns):
#Make a very very simple scenario to estimate time of the split between each of the
four distinct populations
#Assume all pops of constant size
#populations are allowed to each be of different size
#params = T1 - time since SS-SG split, T2 - time between SS-SG split & SS/SG - BO
split, T3 - time between SS/SG - BO split & SS/SG/BO - IK split, when each island
splits off it gets its own population size
#input SFS in order IK, BO, SG, SS
#ns=[n0, n1, n2, n3] - sample sizes
#
T1, T2, T3, IK, BO, SG, LI = params
sts = moments.LinearSystem_1D.steady state 1D(ns[0] + ns[1] + ns[2] +
ns[3])
fs = moments.Spectrum(sts)
fs = moments.Manips.split_ 1D to 2D (fs, ns[0], (ns[1] + ns[2]+ ns[3]))
fs.integrate([IK, (BO + SG+ LI)], T3)
fs = moments.Manips.split_ 2D_to_3D_2 (fs, ns[1], (ns[2] + ns[3]))
fs.integrate([IK, BO, (SG + LI)], T2)
fs = moments.Manips.split 3D_to_4D_3 (fs, ns[2], ns[3])
fs.integrate([IK, BO, SG, LI], T1)
return fs
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def four_AFS_pops_starlike (params, ns):
#A scenario in which the three "western” pops all divide simultaneously, with IK
dividing out earlier
#populations are allowed to each be of different size
#params = T1 - time since SS-SG-BO split, T3 - time between SS/SG/BO split &
SS/SG/BO - IK split, when each island splits off it gets its own population size (there is
no time 2 - this is to maintain same parameter names as other scenarios)
#input SFS in order IK, BO, SG, SS
#ns=[n0, n1, n2, n3] - sample sizes

T1, T3, IK, BO, SG, LI = params

sts = moments.LinearSystem_1D.steady state 1D(ns[0] + ns[1] + ns[2] +
ns[3])

fs = moments.Spectrum(sts)

fs = moments.Manips.split_ 1D _to_2D (fs, ns[0], (ns[1] + ns[2]+ ns[3]))

fs.integrate([IK, (BO + SG+ LI)], T3)

fs = moments.Manips.split 2D to 3D_2 (fs, ns[1], (ns[2] + ns[3]))

fs.integrate([IK, BO, (SG + L1)], 0)

fs = moments.Manips.split_3D_to_4D_3 (fs, ns[2], ns[3])

fs.integrate([IK, BO, SG, LI], T1)

return fs

def four_AFS_pops_star_with_migration (params, ns):

#A scenario in which the three "western™ pops all divide simultaneously, with 1K
dividing out earlier

#After splitting, SG & LI are allowed symetric migration - to explain their closer
relatedness as compared to BO

#populations are allowed to each be of different size - because SG is currently so
much larger than the others this seems like a reasonable addition to make
#params = T1 - time since SS-SG-BO split, T3 - time between SS/SG/BO split &
SS/SG/BO - IK split, when each island splits off it gets its own population size (there is
no time 2 - this is to maintain same parameter names as other scenarios)

#m is migration between SG and LI (in fraction of source population*2Ne)
#input SFS in order IK, BO, SG, SS

#ns=[n0, n1, n2, n3] - sample sizes

T1, T3, IK, BO, SG, LI, m = params

sts = moments.LinearSystem_1D.steady state 1D(ns[0] + ns[1] + ns[2] +
ns[3])

fs = moments.Spectrum(sts)

fs = moments.Manips.split_ 1D to 2D (fs, ns[0], (ns[1] + ns[2]+ ns[3]))

fs.integrate([IK, (BO + SG+ LI)], T3)

fs = moments.Manips.split 2D_to_3D_2 (fs, ns[1], (ns[2] + ns[3]))

14



fs.integrate([IK, BO, (SG + L1)], 0)

fs = moments.Manips.split_3D_to_4D_3 (fs, ns[2], ns[3])

fs.integrate([IK, BO, SG, LI], T1, m = numpy.array([[O, O, 0, 0], [0, O, O,
01.[0, 0, 0, m], [0, 0, m, O]]))

return fs
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Model fitting
print(‘very begining of python script’)
import matplotlib
matplotlib.use('Agg’) # this should let me make plots without seeing them - e.g. on
abel/saga
import matplotlib.pyplot as plt
import numpy
import cython
import mpmath
import networkx
import pandas
import moments
import AFS_demographic_scenarios_16
print(‘stuff imported - AFS model fitting 9')

unfolded_data_colony=moments . Spectrum .
from_file('IK_BO_SG_LI_4d_SFS_unfolded.sfs")
data=unfolded_data_colony.fold()

ns = data.sample_sizes

func = AFS_demographic_scenarios_16.four AFS_populations
#params are T1, T2, T3, IK, BO, SG, LI

upper_bound =1, 1, 1, 10, 10, 10, 10]

lower_bound = [0.0001, 0.0001, 0.0001, 0.01, 0.01, 0.01, 0.01]
p0 =[0.5, 0.5, 0.5, 0.25, 0.25, 0.25, 0.25]

## Perturb our parameters before optimization. This does so by taking each
## parameter a up to a factor of two up or down.

p0 = moments.Misc.perturb_params(p0, fold=1, upper_bound=upper_bound,
lower_bound=lower_bound)

popt = moments.Inference.optimize_log(p0, data, func, lower_bound=Ilower_bound,
upper_bound=upper_bound, verbose=(len(p0)), multinom=False, maxiter=1000)

### Calculate the best-fit model AFS.

model = func(popt, ns)

### Likelihood of the data given the model AFS.

II_model = moments.Inference.ll_multinom(model, data)

theta = moments.Inference.optimal_sfs_scaling(model, data)
print(‘fourway_split_model_IK_BO_SG_LI Optimal value of theta :

{0} .format(theta))

print(‘fourway_split_model IK_BO_SG_LI Best-fit parameters : {0}".format(popt))
print(‘fourway_split_model_IK_BO_SG_LI Maximum log composite likelihood :
{0} .format(ll_model))
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Model fitting shell
#!/bin/bash
#Job name:
#SBATCH --job-name=4d_split
#
# Project:
#SBATCH --account=NN9515K
#
# Wall clock limit:
#SBATCH --time=12:00:00
#
#Max memory usage per core (MB):
#SBATCH --mem-per-cpu=5G
#
#Number of cores:
#SBATCH --cpus-per-task=1
#
# another 500 jobs will run in this array at the same time
#SBATCH --array=1-500
#
#Send the output to the moments directory
#SBATCH --
output=Programs/Moments/Output/fourway_starlike_model IK_BO_SG_LI_fitting_
%j.out

## Set up job environment:

#source /cluster/bin/jobsetup

module purge # clear any inherited modules
set -0 errexit # exit on errors

set -0 nounset # Treat unset variables as errors

module load Python/3.7.4-GCCcore-8.3.0
module load SciPy-bundle/2019.10-intel-2019b-Python-3.7.4
module list

cd Programs/Moments/moments_2020/

# each job will see a different {SLURM_ARRAY_TASK_ID}

echo "now processing task id:: " ${SLURM_ARRAY_TASK ID}

python -u AFS_four_way_model_fitting_9.py >

./Output/fourway_split_ model IK_BO_SG_LI fitting_array ${SLURM_ARRAY_TAS
K_ID}.txt
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Ilustration
#A script to plot a spiffy figure of population history
import matplotlib
matplotlib.use("Agg") # to make compatible with the Abel/Saga computing clusters
import matplotlib.pyplot as plt
import numpy
import moments
import AFS_demographic_scenarios_18

#starlike model

func = AFS_demographic_scenarios_18.four AFS_pops_starlike

popt = [0.00593865, 0.00803673, 0.15200561, 0.18012004, 0.4511215, 0.45885403]
ns = [27, 27, 27, 27]

model = moments.ModelPlot.generate_model(func, popt, ns)
moments.ModelPlot.plot_model(model, save_file="Starlike_4 way_bestfit_model.jpg’,
pop_labels= ['IK', 'B@", 'SG', 'LI'], fig_title="Best-fit Starlike Model’, nref=1,
gen_time=10, gen_time_units="Years', reverse_timeline=True, draw_scale=0,
pop_color="DarkSlateBlue")

#Bifurcating model

func = AFS_demographic_scenarios_18.four_AFS_populations

popt = [0.00526866, 0.0009508, 0.01053675, 0.17880176, 0.18352939, 0.43806924,
0.42867754]

ns = [27, 27, 27, 27]

model = moments.ModelPlot.generate_model(func, popt, ns)
moments.ModelPlot.plot_model(model,

save_file="Bifurcating_4_ way_bestfit_model.jpg’, pop_labels= ['IK', 'B@", 'SG', 'LI"],
fig_title="Best-fit Bifurcating Model’, nref=1, gen_time=10, gen_time_units="Years',
reverse_timeline=True, draw_scale=0, pop_color="LightSeaGreen")
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Site Frequency spectra for single colonies

South Shetlands

25553057.799840  63487.467737 38842.370006 27502.246436 19827.536880
15546.198121 13100.330814 10604.761716 10049.299586 9085.431885
8289.342069 7790.740682 7729.555159 5503.919067

South Georgia

23930656.602436  70136.047269 34260.225672 24403.499580 18505.560092
14494.259381 12015.242932 9905.691773 8731.287584 8415.540759
7071.762256 7358.078227 6388.024432 4965.177606

Bouvetgya

22992438.330913  46189.660833 30409.390996 21224.213546 17558.355220
13691.143159 12048.080765 7829.214719 11279.476092 4483.580895
10857.532247 5225.604281 3083.901721 8694.514613

Illes Kerguelen

30804020.103347  43428.667162 32448.283605 27775.347198 22262.607846
18949.202816 15084.200371 13962.839328 12001.741571 11269.094011
10052.381619 9930.139917 9004.795216 7705.595993
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