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This document provides all R codes for the analyses described in Grosser et

al. “Fur seal microbiota are shaped by the social and physical environment,

show mother-offspring similarities and are associated with host genetic

quality”. We hope that sharing this code alongside the paper will be useful for

other researchers. If you have any questions about the analyses feel free to

contact me at s.grosser[at]biologie.uni-muenchen.de.

We collected skin swabs and genetic samples from 48 Antarctic fur seals (A.

gazella) mother-offspring pairs from two breeding sites on Bird Island, South

Georgia (freshwater beach and special study beach) and used 16S amplicon

sequencing to characterise their bacterial communities. We hypothesise (i)

that bacterial diversity should be lower at the colony with high breeding

density (special study beach) due to the suppressive effects of elevated

social stress on microbial communities; and (ii) that mothers and their pups

should have similar microbiomes, reflecting their chemical similarity

(discovered in a previous study by Stoffel et al. 2015). We additionally

genotyped all of the individuals at 50 hypervariable microsatellite loci and

regressed multilocus heterozygosity against microbial diversity. According to

the leash model of host control, we would expect to find a negative

association between genome-wide individual heterozygosity and overall

bacterial diversity. For microbiome characterisation the V3-V4 region of the

16S rRNA gene was paired-end sequenced on an Illumina MiSeq instrument.

The paired-end reads were merged and clustered into 97% OTUs and an

OTU table was generated following the UPARSE pipeline (Usearch v.9.2.64).

Read counts
Because sequencing depth can vary between samples, we first visualise the

number of read pairs sequenced per sample and the number of sequences

that were successfully merged per sample. The highest read pair count is

157,204 (mother-M19), and the lowest 9,607 (pup-P39).

library(ggplot2)

## Read table containing information about the collected st

atistics during OTU table generation

stats.tab<-read.table("./AFSmicrobiome_SI_SequencingStatsFi

le_Rinput_DatasetS4.txt", sep="\t", header=T)

## Plot reads per sample. Total number of reads pairs is pl

otted in lightgray; number of merged read pairs is plotted 

in darkgray

beach_labels <- c(FWB = "Freshwater Beach", SSB = "Special 

Study Beach")

#age_labels <- c(Mother = "Mothers", Pup = "Pups")

ggplot()+ 

Code 
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  facet_grid(.~Beach, drop=TRUE,space="free",scales="free",

labeller=labeller(Beach=beach_labels)) +

  geom_bar(data=stats.tab,aes(x=SampleID, y=TotalReads),sta

t="identity",fill="lightgrey", colour="darkgrey",width=.7)+

  geom_bar(data=stats.tab,aes(x=SampleID, y=ReadsMerged),st

at="identity",fill="darkgrey", colour="darkgrey",width=.7)+

  ylab("No. of read pairs")+

  xlab("Sample ID")+

  theme_bw()+

  guides(fill=FALSE) +

  theme(panel.grid.major = element_blank(), panel.grid.mino

r = element_blank())+

  theme(axis.text.x = element_text(angle=90, size=5), axis.

title.x = element_text(margin = margin(5, 0, 0, 0)))+

  theme(axis.title.y=element_text(margin = margin(0, 15, 0,

 0)), axis.text.y = element_text(size=10))

Figure 1. Number of read pairs per sample. Total number of paired-end raw reads
is shown in lightgray, and the number of merged reads is shown in darkgray. M
samples represent mothers, P samples represent pups. Matching numbers belong
to a mother-pup pair.

Individual relatedness
Before analysing the microbiome data of the mother-pup pairs, genetic

relatedness is calculated from 50 microsatellites (tested for LD and HWE).

Relatedness is calculated with the package “related” following the author’s

tutorial. Individual P22 is excluded from the analysis due to large amounts of

missing data.

library(related)

library(gridExtra)

library(reshape2)

library(dplyr)

## Load genotype data (IMPORTANT NOTE: delete the header ro

w containing loci names before loading!)

msats <- readgenotypedata("./AFSmicrobiome_SI_Microsatellit

eGenotypes50_P22removed_colnames_Rinput_DatasetS5.txt")

# ## Compare the different estimators

# comp <- compareestimators(msats, 100)

# wang        0.951875  --> use Wang

# lynchli       0.950463

# lynchrd       0.933553

# quellergt 0.949013

https://frasierlab.files.wordpress.com/2015/03/tutorial1.pdf
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## Simulate for 100 individuals to assess power of the anal

ysis

sim <- familysim(msats$freqs, 100)

relsim <- coancestry(sim , wang = 1)

##    user  system elapsed 

##  38.027   2.153  51.701 

## 

## Reading output files into data.frames... Done!

relsim <- cleanuprvals(relsim$relatedness , 100)

## Extract only the column containing the wang estimates

relvalues <- as.numeric(relsim[,"wang"])  

label1  <- rep("PO", 100)

label2  <- rep("Full", 100)

label3  <- rep("Half", 100)

label4  <- rep("Unrelated", 100)

labels <- c(label1 , label2 , label3 , label4)

relsimtab <- as.data.frame(cbind(relvalues,labels),stringsA

sFactors=FALSE)

relsimtab$relvalues <- as.numeric(relsimtab$relvalues)

## Calculate relatedness (wang estimator) for the fur seal 

individuals

rel <- coancestry(msats$gdata, wang = 1)

##    user  system elapsed 

##   0.511   0.047   0.906 

## 

## Reading output files into data.frames... Done!

relvals <- rel$relatedness[,c("pair.no","ind1.id","ind2.id"

,"wang")]

## write the results to a table and manually add a column d

efining status of a pair as "unrel" or "pair"

# write.table(relvals, "./relatednessWang50Msats_P22removed

.txt",sep = "\t",quote = FALSE)

relvals2 <- read.table("./AFSmicrobiome_SI_relatednessWang5

0Msats_Rinput_DatasetS6.txt",sep = "\t",header=TRUE)

## Boxplots for the simulation results

q <- ggplot(relsimtab, aes(x=labels, y=relvalues)) + 

      geom_boxplot(fill="lightgrey") + 

      theme(legend.position='none') +  

      theme_bw() + 

      theme(panel.grid.major = element_blank(),panel.grid.m

inor = element_blank()) +   

      ylab("Relatedness Estimate (Wang)")+

      xlab("Relatedness Category")+

      coord_cartesian(ylim = c(-0.3, 0.7))+

      theme(axis.text.x = element_text(size=10), axis.title

.x = element_text(margin = margin(10, 0, 0, 0)))+

      theme(axis.title.y=element_text(margin = margin(0, 15

, 0, 0)), axis.text.y = element_text(size=10))

## Make a boxplot for the pairs and unrelated categories an
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d mark the outlier points with the number of the comparison

.

is_outlier <- function(x) {

  return(x < quantile(x, 0.25) - 1.5 * IQR(x) | x > quantil

e(x, 0.75) + 1.5 * IQR(x))

}

relvals2[,"pairNames"] <-  paste(relvals2[,2], relvals2[,3]

, sep="")

b <-relvals2 %>%

  group_by(pairs) %>%

  mutate(outlier = ifelse(is_outlier(wang), pairNames , as.

numeric(NA))) %>%

  ggplot(., aes(x = factor(pairs), y = wang)) +

  geom_boxplot(fill="lightgrey") +

  xlab("Relatedness Category")+

  ylab("")+

  theme_bw() + 

  theme(panel.grid.major = element_blank(),panel.grid.minor

 = element_blank()) +  

  coord_cartesian(ylim = c(-0.3, 0.7))+

  theme(axis.text.x = element_text(size=10), axis.title.x =

 element_text(margin = margin(10, 0, 0, 0)))+

  theme(axis.title.y=element_text(margin = margin(0, 15, 0,

 0)), axis.text.y = element_text(size=10))+

  geom_text(aes(label = outlier), na.rm = TRUE, hjust = -0.

3,size=2)

grid.arrange(q,b, ncol=2)

Figure 2. Pairwise relatedness estimates. The left panel shows relatedness values
for simulated pairs of known relatedness. Estimates for Antarctic fur seal individuals
are shown in the right panel. Estimates are divided into expected mother-pup pair
(PO) and unrelated pairwise comparisons.

The wang estimator seems to be suitable to reliably distinguish parent-

offspring pairs from unrelated individual pairs. The results show that five of

the apparent mother-pup pairs are not related. These five pairs are all from

special study beach (high-density colony). This suggests, that pairs have

been wrongly identified in the field (allo-suckling occurs in this species). Pairs

identified as unrelated by this analysis are: Pair49, Pair46, Pair15, Pair13,

Pair11. An additional parentage analsis with the software Colony also

confirms these pairs to be unrelated. Based on these results the five pairs will

be treated as unrelated in analyses that require pair information. 

The A. gazella skin microbiome
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## Convert the UPARSE .sintax classification table into a d

ata frame

## This script was kindly provided by Dr. Ulrich Knief

## Sintax format:

# Otu1  d:Bacteria(1.0000),p:"Proteobacteria"(1.0000),c:Gam

maproteobacteria(1.0000),o:Pseudomonadales(1.0000),f:Moraxe

llaceae(1.0000),g:Psychrobacter(1.0000),s:Psychrobacter_mar

itimus(0.3100) +   d:Bacteria,p:"Proteobacteria",c:Gammapro

teobacteria,o:Pseudomonadales,f:Moraxellaceae,g:Psychrobact

er

## Phyloseq required format

#      Domain Phylum Class Order Family Genus Species

# OTU1  "b"    "b"    "v"   "v"   "l"    "n"   "j"    

path = "./"

separators <- c("d","p","c","o","f","g","s")

dat <- read.table(paste(path, "AFSmicrobiome_SI_otuRDPclass

ification_Rinput_DatasetS7.sintax", sep=""), header=FALSE, 

sep="+", stringsAsFactors=FALSE)

## Get OTU IDs

OTUs <- unlist(lapply(strsplit(as.character(dat$V1),"\t",fi

xed = TRUE),"[[",1))

## Create data frame

tab <- data.frame(matrix(rep(NA,8*length(OTUs)),ncol=8))

colnames(tab) <- c("OTU","Domain","Phylum","Class","Order",

"Family","Genus","Species")

## Loop over all rows

for(i in 1:nrow(tab)) {

  out <- unlist(strsplit(as.character(dat$V2), ",", fixed =

 TRUE)[i])

  

  ## Find and add missing values

  Add <- which(!(separators %in% gsub("\t", "", unlist(lapp

ly(strsplit(as.character(out), ":", fixed = TRUE),"[[",1)))

))

  if(length(Add)>0) { for(j in 1:length(Add)) { out <- c(ou

t[1:(Add[j]-1)],paste(separators[Add[j]],":NA",sep=""),out[

Add[j]:length(out)]); out <- out[1:7] }}

  

  ## If missing values occur always on the right, this will

 work:

  ##    while(length(out) < 7) { out <- c(out,":NA") }

  out <- unlist(lapply(strsplit(as.character(out), ":", fix

ed = TRUE),"[[",2))

  tab[i, ] <- c(OTUs[i],out)

}

# write.table(tab,paste(path, "AFSmicrobiome_SI_otuRDPclass

ification_phyloseqIn_Rinput_DatasetS8.txt", sep=""), append

=FALSE, row.names=FALSE, col.names=TRUE, sep="\t", quote=FA

LSE, eol="\n")

## Manually change "_" to a space and remove "/Chloroplast"

 from the phylum column annotation "Cyanobacteria/Chloropla
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st" for better readability of plots (The Phylum level annot

ation is always Cyanobacteria/Chloroplast for all Cyanobact

eria. However, none of the sequences should be chloroplast 

derived in this analysis as they have been filtered after t

he OTU clustering.)

library(phyloseq)

library(ggplot2)

library(vegan)

library(dplyr)

library(scales)

library(grid)

library(reshape2)

library(gridExtra)

library(knitr)

## Import the OTU table 

otu.tab <- as.matrix(read.table("./AFSmicrobiome_SI_OTUtabl

e_final_trimmed_allSamples_Rinput_DatasetS9.txt", header=T,

 sep= "\t", row.names=1, na.strings=c("","NA")))

## Import the rarefied OTU table (10,000 reads/sample)

otu_rarefied.tab <- as.matrix(read.table("./AFSmicrobiome_S

I_OTUtable_final_trimmed_raref10000_Rinput_DatasetS10.txt",

 header=T, sep= "\t", row.names=1, na.strings=c("","NA")))

## Import the taxonomy table

tax.tab <- as.matrix(read.table("./AFSmicrobiome_SI_otuRDPc

lassification_phyloseqIn_Rinput_DatasetS8.txt", header=T, s

ep= "\t", row.names=1, na.strings=c("","NA")))

## Import sample meta data

meta.tab <- read.table("./AFSmicrobiome_SI_Metadata_allSamp

les_Rinput_DatasetS11.txt", header=T, sep= "\t", row.names=

1, na.strings=c("","NA"))

## Combine all files into a phyloseq object

otu.obj <- otu_table(otu.tab, taxa_are_rows = TRUE)

tax.obj <- tax_table(tax.tab)

meta.obj <- sample_data(meta.tab)

otu_rarefied.obj <- otu_table(otu_rarefied.tab, taxa_are_ro

ws = TRUE)

## Make a phyloseq object

phylo.obj <- phyloseq(otu.obj, tax.obj, meta.obj)

phylo_rarefied.obj <- phyloseq(otu_rarefied.obj, tax.obj, m

eta.obj)

## Look at the phyloseq object

phylo.obj

## phyloseq-class experiment-level object

## otu_table()   OTU Table:         [ 788 taxa and 96 sampl

es ]

## sample_data() Sample Data:       [ 96 samples by 7 sampl

e variables ]

## tax_table()   Taxonomy Table:    [ 788 taxa by 7 taxonom

ic ranks ]

## Convert the OTU and taxonomy tables into a data frame

otus <- as.data.frame(otu.tab)

otus <- cbind(otus, rownames(otus))
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colnames(otus)[length(otus)] <- "OTU"

tax <- as.data.frame(tax.tab)

tax <- cbind(tax, rownames(tax))

colnames(tax)[length(tax)] <- "OTU"

## Merge the tables

otu_tax <- dplyr::left_join(otus, tax, by = "OTU")

## Calculate the total number of reads for each OTU and add

 a column to the data frame

otu_tax <- cbind(otu_tax, rowSums(otu_tax[,1:96]))

colnames(otu_tax)[105] <- "TotalCount"

## Remove unwanted levels and rename NA columns to "undefin

ed"

otu_tax$Phylum <- droplevels(otu_tax$Phylum)

levels(otu_tax$Phylum) <- c(levels(otu_tax$Phylum), "undefi

ned") 

otu_tax$Phylum[is.na(otu_tax$Phylum)] <- "undefined"

levels(otu_tax$Genus) <- c(levels(otu_tax$Genus), "undefine

d") 

otu_tax$Genus[is.na(otu_tax$Genus)] <- "undefined"

## Make a table with phyla abundance from the unadjusted co

unts

TotalPhylaCounts <- as.data.frame(aggregate(TotalCount ~ Ph

ylum, FUN = sum, data=otu_tax))

TotalPhylaCounts <- dplyr::arrange(TotalPhylaCounts, desc(T

otalCount))

## Calculate percentages

TotalPhylaCounts <- cbind(TotalPhylaCounts,(TotalPhylaCount

s$TotalCount*100)/sum(TotalPhylaCounts$TotalCount))

colnames(TotalPhylaCounts)[3] <- "Abundance"

## Check if all reads add up to the total read count of 3,1

73,550

#sum(TotalPhylaCounts$TotalCount)

## Count the number of OTUs for each phylum

df <- data.frame(Phylum=character(),NoOTUs = integer(), str

ingsAsFactors=FALSE) 

for (i in TotalPhylaCounts$Phylum) {

      len <- length(which(otu_tax$Phylum == i))

      df2 <- as.data.frame(cbind(Phylum = i, NoOTUs = len),

stringsAsFactors=FALSE)

      df <- rbind(df,df2)

}

df$NoOTUs <- as.numeric(df$NoOTUs)

## Add this information to the abundance table

TotalPhylaCounts <- dplyr::left_join(TotalPhylaCounts,df, t

ax, by = "Phylum")

colnames(TotalPhylaCounts) <- c("Phylum","Read Count", "Abu

ndance (%)", "No of. OTUs")

## Do the same for the genus level

TotalGenusCounts <- as.data.frame(aggregate(TotalCount ~ Ge

nus, FUN = sum, data=otu_tax))

TotalGenusCounts <- dplyr::arrange(TotalGenusCounts, desc(T

otalCount))

TotalGenusCounts <- cbind(TotalGenusCounts,(TotalGenusCount

s$TotalCount*100)/sum(TotalGenusCounts$TotalCount))

colnames(TotalGenusCounts)[3] <- "Abundance"

## Count the number of OTUs for each genus

df <- data.frame(Genus=character(),NoOTUs = integer(), stri

ngsAsFactors=FALSE) 
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for (i in TotalGenusCounts$Genus) {

      len <- length(which(otu_tax$Genus == i))

      df2 <- as.data.frame(cbind(Genus= i, NoOTUs = len),st

ringsAsFactors=FALSE)

      df <- rbind(df,df2)

}

df$NoOTUs <- as.numeric(df$NoOTUs)

## Add this information to the abundance table

TotalGenusCounts <- dplyr::left_join(TotalGenusCounts,df, t

ax, by = "Genus")

colnames(TotalGenusCounts) <- c("Genus","Read Count", "Abun

dance (%)", "No of. OTUs")

First, we examine the presence and abundance of bacterial phyla in the

Antarctic fur seal skin microbiome. 

library(kableExtra)

## Make a table for phyla abundance

kable(TotalPhylaCounts ,format = "html", digits = 2, row.na

mes = FALSE, caption = "Table 1. Bacterial phyla detected i

n the Antarctic fur seal skin microbiome.") %>%

  kable_styling(bootstrap_options = c("condensed","striped"

), full_width = F)

Table 1. Bacterial phyla detected in the Antarctic fur seal skin microbiome.

Phylum Read Count Abundance (%) No of. OTUs

Proteobacteria 1231373 38.80 210

Bacteroidetes 695050 21.90 165

Firmicutes 676701 21.32 134

Actinobacteria 360848 11.37 104

Deinococcus-Thermus 32948 1.04 6

Cyanobacteria 32410 1.02 11

Verrucomicrobia 31885 1.00 35

Candidatus Saccharibacteria 29301 0.92 36

Fusobacteria 26987 0.85 9

Acidobacteria 24372 0.77 18

undefined 17517 0.55 33

Planctomycetes 3892 0.12 5

Gemmatimonadetes 2502 0.08 4

Chloroflexi 2386 0.08 5

SR1 1641 0.05 3

Tenericutes 1259 0.04 2

Armatimonadetes 1101 0.03 3

BRC1 760 0.02 2
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Microgenomates 263 0.01 1

Synergistetes 183 0.01 1

Ignavibacteriae 171 0.01 1

Then we have a look at the presence and abundance of bacterial genera.

library(kableExtra)

## Make a table for genus abundance

kable(TotalGenusCounts, format = "html", digits = 2, row.na

mes = FALSE, caption = "Table 2. Bacterial genera detected 

in the Antarctic fur seal skin microbiome") %>%

  kable_styling(bootstrap_options = c("condensed","striped"

), full_width = F)

Table 2. Bacterial genera detected in the Antarctic fur seal skin microbiome

Genus

Read

Count

Abundance

(%)

No of.

OTUs

undefined 870685 27.44 383

Psychrobacter 857218 27.01 8

Chryseobacterium 207721 6.55 9

Jeotgalibaca 91772 2.89 1

Streptococcus 60549 1.91 4

Gelidibacter 56676 1.79 1

Clostridium sensu stricto 56256 1.77 10

Arthrobacter 54460 1.72 2

Clostridium XI 47155 1.49 2

Jeotgalicoccus 46836 1.48 2

Tissierella 44746 1.41 4

Otariodibacter 44194 1.39 2

Flavobacterium 40695 1.28 17

Polaromonas 34744 1.09 3

Deinococcus 32948 1.04 6

Planococcus 30350 0.96 1

Saccharibacteria genera incertae

sedis

24111 0.76 26

Nocardioides 22547 0.71 12

Bacteroides 22041 0.69 5

Atopostipes 20383 0.64 2
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Aequorivita 18827 0.59 1

Fusobacterium 18589 0.59 5

Agrococcus 18569 0.59 1

Granulosicoccus 18143 0.57 10

Luteolibacter 15901 0.50 11

Acinetobacter 15767 0.50 3

Neisseria 14924 0.47 1

Carnobacterium 14596 0.46 1

Ilumatobacter 14174 0.45 3

Sporosarcina 13841 0.44 1

Aquihabitans 12667 0.40 5

GpIV 11124 0.35 3

Lactobacillus 10918 0.34 4

Atopobacter 10821 0.34 1

Blautia 8895 0.28 2

Erysipelothrix 8753 0.28 2

Anaerococcus 8526 0.27 2

Thermomonas 8498 0.27 1

Escherichia/Shigella 8387 0.26 1

Porphyromonas 8122 0.26 4

Marinobacter 7551 0.24 2

Hymenobacter 7429 0.23 9

Pedobacter 6764 0.21 6

Leifsonia 6290 0.20 1

Dietzia 6261 0.20 1

Arcanobacterium 6135 0.19 1

Polymorphobacter 6036 0.19 1

Staphylococcus 5918 0.19 1

Lacihabitans 5658 0.18 3

Streptobacillus 5386 0.17 2

Eubacterium 5114 0.16 1

Arenibacter 4919 0.15 2

Pricia 4886 0.15 2

Dokdonella 4857 0.15 2

Clostridium XlVb 4760 0.15 2
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Corynebacterium 4692 0.15 4

Coxiella 4671 0.15 1

Ornithinicoccus 4509 0.14 1

Helcococcus 4018 0.13 2

Lachnospiracea incertae sedis 3844 0.12 1

Spirosoma 3830 0.12 4

Methylobacterium 3806 0.12 1

Rhodoferax 3731 0.12 1

Capnocytophaga 3315 0.10 1

Brachybacterium 3238 0.10 1

Psychromonas 3238 0.10 1

Bisgaardia 2676 0.08 1

Rhodococcus 2555 0.08 2

Gemmatimonas 2502 0.08 4

Moraxella 2467 0.08 1

Pseudomonas 2461 0.08 2

Brumimicrobium 2448 0.08 2

Globicatella 2399 0.08 1

Ferruginibacter 2396 0.08 1

Sphingorhabdus 2393 0.08 1

Trichococcus 2345 0.07 1

Sphingomonas 2220 0.07 3

Rhodanobacter 2110 0.07 2

Collinsella 2107 0.07 1

Nakamurella 2009 0.06 1

Tomitella 1991 0.06 1

Finegoldia 1923 0.06 1

Butyricicoccus 1919 0.06 1

Lysobacter 1853 0.06 1

Gp6 1823 0.06 2

Blastocatella 1797 0.06 1

Terrimonas 1736 0.05 2

Dyadobacter 1714 0.05 2

Enterococcus 1699 0.05 2

Spartobacteria genera incertae 1625 0.05 5
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sedis

Leadbetterella 1623 0.05 2

Peptoniphilus 1607 0.05 3

Algoriphagus 1483 0.05 1

Roseomonas 1461 0.05 1

Acetoanaerobium 1429 0.05 1

Prosthecobacter 1354 0.04 3

Mycoplasma 1259 0.04 2

Macrococcus 1218 0.04 1

Parvimonas 1204 0.04 1

Terrisporobacter 1201 0.04 1

Labilithrix 1189 0.04 1

Methylotenera 1185 0.04 1

Hydrogenophaga 1175 0.04 1

Coenonia 1152 0.04 1

Sulfitobacter 1136 0.04 1

Gp16 1135 0.04 2

Aeromicrobium 1122 0.04 1

Devosia 1114 0.04 2

Simplicispira 1101 0.03 1

Peptostreptococcus 1072 0.03 1

Jannaschia 1053 0.03 2

Rheinheimera 1029 0.03 1

Rubritalea 950 0.03 3

Catellicoccus 947 0.03 1

Loktanella 923 0.03 2

Desulfobulbus 921 0.03 2

Pseudoalteromonas 901 0.03 1

Armatimonas/Armatimonadetes

gp1

889 0.03 2

Alloprevotella 841 0.03 1

Demequina 835 0.03 1

Rhodobacter 835 0.03 1

Nitrosospira 830 0.03 2

Alkanindiges 829 0.03 1
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Campylobacter 788 0.02 2

Lewinella 787 0.02 1

Propionivibrio 786 0.02 1

Arenimonas 766 0.02 2

Alistipes 760 0.02 2

Flavimarina 756 0.02 1

Fusibacter 708 0.02 1

Ezakiella 695 0.02 2

Anaerovorax 691 0.02 2

Hahella 675 0.02 1

Facklamia 610 0.02 2

Mesorhizobium 604 0.02 1

Tannerella 580 0.02 1

Sutterella 573 0.02 2

Pyrinomonas 554 0.02 1

Rhizobacter 535 0.02 1

Anaerobiospirillum 530 0.02 2

Aquabacterium 501 0.02 1

Oceanisphaera 495 0.02 1

Thiobacillus 460 0.01 1

Bradymonas 459 0.01 1

Allofustis 450 0.01 1

Paludibacter 447 0.01 2

Proteocatella 437 0.01 1

Faecalibacterium 431 0.01 1

Marmoricola 419 0.01 1

Maribacter 402 0.01 1

Desulfonispora 385 0.01 1

Geobacter 382 0.01 1

Peredibacter 380 0.01 2

Sphingobium 374 0.01 1

Lactococcus 373 0.01 1

Phascolarctobacterium 369 0.01 1

Methylobacter 353 0.01 1

Planktotalea 352 0.01 1
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Massilia 346 0.01 1

Nosocomiicoccus 335 0.01 1

Pseudoxanthomonas 332 0.01 1

Rhizobium 329 0.01 1

Undibacterium 329 0.01 1

Deefgea 327 0.01 1

Peptostreptococcaceae incertae

sedis

322 0.01 1

Aerococcus 321 0.01 1

Oleispira 317 0.01 1

GpI 312 0.01 1

Desulfobacterium 306 0.01 1

SR1 genera incertae sedis 299 0.01 1

Cocleimonas 297 0.01 1

Roseiarcus 287 0.01 1

Taibaiella 285 0.01 1

Subdivision3 genera incertae

sedis

283 0.01 1

Slackia 247 0.01 1

Romboutsia 244 0.01 1

Vagococcus 243 0.01 1

Dialister 241 0.01 1

Leptotrichia 241 0.01 1

Gp1 237 0.01 1

Terrimicrobium 229 0.01 1

Weissella 216 0.01 1

Mycobacterium 211 0.01 1

Acidiphilium 206 0.01 1

Cryomorpha 204 0.01 1

Polaribacter 203 0.01 1

Terriglobus 195 0.01 1

Arcicella 190 0.01 1

Catonella 190 0.01 1

Iamia 180 0.01 1

Gp17 178 0.01 1

Saccharofermentans 176 0.01 1
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Brevundimonas 172 0.01 1

Arcobacter 169 0.01 1

Actinomyces 164 0.01 1

Oscillibacter 164 0.01 1

The core microbiome
Next, we examine the core microbiome. We can define the core microbiome

of a group of hosts as the OTUs that are present in a certain percentage of

the sampled individuals. Here we want to know which OTUs are present in all

of the sampled individuals and in 90% of the sampled individuals. 

## Get the core microbiome (i.e. all OTUs that are present 

in 100% of the samples)

core.tab <- otu_tax[which((apply(otu_tax[,1:96], 1, functio

n(row) all(row !=0 )))=="TRUE"),]

#dim(core.tab) # 29 OTUs are present in all samples

## Make a table for the taxonomic information of the core m

icrobiome

core.tax <- core.tab[,c(97:105)] 

## Calculate the percentages

core.tax <- cbind(core.tax,(core.tax$TotalCount*100)/317355

0)

core_print.tax <- core.tax[,c("OTU","Phylum","Family","Genu

s","(core.tax$TotalCount * 100)/3173550")]

colnames(core_print.tax)[5] <- "Abundance (%)"

## Export as tab delimited table

# write.table(core_print.tax, "./AFSCoreMicrobiomeOTUs.txt"

, sep = "\t", quote = FALSE)

## Get the core microbiome present in 90% of the samples

## 90% of samples is 86.4, i.e, OTUs have to be present in 

87 or more samples.

core90.tab <- otu_tax[apply(otu_tax[,1:96] != 0, 1, sum) >=

 87, ]

#dim(core90.tab) # 123 OTUs are present in 90% of the sampl

es

## Make a table with the additional OTUs not already presen

t in the 100% core microbiome table

core90.tax <- core90.tab[,c(97:105)] 

## Calculate the percentages

core90.tax <- cbind(core90.tax,(core90.tax$TotalCount*100)/

3173550)

## Remove the OTUs that are already present in the 100% cor

e microbiome table

core90_reduced.tax <- core90.tax[-which(core90.tax$OTU %in%

 core.tax$OTU),]

core90_reduced_print.tax <- core90_reduced.tax[,c("OTU","Ph

ylum","Family","Genus","(core90.tax$TotalCount * 100)/31735

50")]

colnames(core90_reduced_print.tax)[5] <- "Abundance (%)"

## Export as tab delimited table

# write.table(core90_reduced_print.tax, "./AFSCoreMicrobiom
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e90OTUs.txt", sep = "\t", quote = FALSE)

kable(core_print.tax, format = "html", digits = 2, row.name

s = FALSE, caption = "**Table 3.** Antarctic fur seal skin 

core microbiome (OTUs present in all sampled individuals)")

 %>%

  kable_styling(bootstrap_options = c("condensed","striped"

), full_width = F)

Table 3. Antarctic fur seal skin core microbiome (OTUs present in all sampled

individuals)

OTU Phylum Family Genus

Abundance

(%)

Otu1 Proteobacteria Moraxellaceae Psychrobacter 17.28

Otu3 Bacteroidetes Flavobacteriaceae Chryseobacterium 5.50

Otu22 Proteobacteria Moraxellaceae Psychrobacter 3.79

Otu4 Firmicutes Carnobacteriaceae Jeotgalibaca 2.89

Otu2253 Proteobacteria Moraxellaceae Psychrobacter 2.83

Otu6 Actinobacteria Intrasporangiaceae undefined 2.47

Otu13 Proteobacteria Moraxellaceae Psychrobacter 2.12

Otu29 Firmicutes Streptococcaceae Streptococcus 1.60

Otu16 Actinobacteria Propionibacteriaceae undefined 1.29

Otu15 Firmicutes Clostridiales Incertae

Sedis XI

Tissierella 0.99

Otu31 Actinobacteria Micrococcaceae Arthrobacter 0.88

Otu11 Actinobacteria Micrococcaceae Arthrobacter 0.84

Otu14 Firmicutes Clostridiaceae 1 Clostridium sensu

stricto

0.83

Otu5 Firmicutes Peptostreptococcaceae Clostridium XI 0.80

Otu26 Deinococcus-

Thermus

Deinococcaceae Deinococcus 0.67

Otu18 Bacteroidetes Flavobacteriaceae Flavobacterium 0.60

Otu19 Firmicutes Clostridiaceae 1 Clostridium sensu

stricto

0.59

Otu78 Firmicutes Carnobacteriaceae Atopostipes 0.59

Otu17 Bacteroidetes Flavobacteriaceae undefined 0.59

Otu36 Actinobacteria Microbacteriaceae Agrococcus 0.59

Otu401 Proteobacteria Moraxellaceae Psychrobacter 0.57

Otu1771 Bacteroidetes Flavobacteriaceae Chryseobacterium 0.50

Otu25 Firmicutes Carnobacteriaceae Carnobacterium 0.46
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Otu32 Firmicutes Planococcaceae Sporosarcina 0.44

Otu43 Actinobacteria Acidimicrobiaceae Ilumatobacter 0.37

Otu82 Bacteroidetes Flavobacteriaceae undefined 0.34

Otu72 Proteobacteria Rhodobacteraceae undefined 0.21

Otu145 Actinobacteria Microbacteriaceae Leifsonia 0.20

Otu488 Actinobacteria Nocardioidaceae Nocardioides 0.11

kable(core90_reduced_print.tax, format = "html", digits = 2

, row.names = FALSE, caption = "**Table 4.** Antarctic fur 

seal skin extended core microbiome (OTUs present in 90% of 

the sampled individuals)") %>%

  kable_styling(bootstrap_options = c("condensed","striped"

), full_width = F)

Table 4. Antarctic fur seal skin extended core microbiome (OTUs present in 90% of the

sampled individuals)

OTU Phylum Family Genus

Abundance

(%)

Otu9 Bacteroidetes Flavobacteriaceae Gelidibacter 1.79

Otu7 Bacteroidetes Flavobacteriaceae undefined 1.74

Otu12 Firmicutes Planococcaceae undefined 1.31

Otu24 Bacteroidetes Flavobacteriaceae undefined 1.04

Otu83 Proteobacteria Comamonadaceae Polaromonas 0.88

Otu90 Proteobacteria Pasteurellaceae Otariodibacter 0.86

Otu60 Proteobacteria Comamonadaceae undefined 0.73

Otu8 Firmicutes Peptostreptococcaceae Clostridium XI 0.68

Otu995 Proteobacteria Pasteurellaceae Otariodibacter 0.54

Otu93 Proteobacteria Rhodobacteraceae undefined 0.49

Otu51 Proteobacteria Neisseriaceae Neisseria 0.47

Otu38 Firmicutes Clostridiaceae 1 undefined 0.46

Otu35 Proteobacteria Moraxellaceae Acinetobacter 0.44

Otu54 Bacteroidetes Bacteroidaceae Bacteroides 0.40

Otu129 Bacteroidetes Chitinophagaceae undefined 0.40

Otu80 Firmicutes Carnobacteriaceae Atopobacter 0.34

Otu21 Cyanobacteria Family IV GpIV 0.32

Otu28 Fusobacteria Fusobacteriaceae Fusobacterium 0.29

Otu141 Proteobacteria Xanthomonadaceae Thermomonas 0.27

Otu57 Proteobacteria Enterobacteriaceae Escherichia/Shigella 0.26
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Otu84 Actinobacteria Intrasporangiaceae undefined 0.26

Otu50 Actinobacteria NA undefined 0.26

Otu59 Firmicutes Clostridiales Incertae

Sedis XI

Anaerococcus 0.26

Otu47 Firmicutes Clostridiales Incertae

Sedis XI

Tissierella 0.25

Otu96 Actinobacteria Iamiaceae Aquihabitans 0.25

Otu45 Firmicutes Ruminococcaceae undefined 0.24

Otu52 Bacteroidetes Flavobacteriaceae Flavobacterium 0.24

Otu53 Firmicutes Lachnospiraceae Blautia 0.24

Otu102 Proteobacteria Burkholderiaceae undefined 0.24

Otu68 Actinobacteria Nocardioidaceae Nocardioides 0.23

Otu101 Bacteroidetes Flavobacteriaceae Chryseobacterium 0.23

Otu46 Actinobacteria NA undefined 0.21

Otu76 Deinococcus-

Thermus

Deinococcaceae Deinococcus 0.20

Otu86 Actinobacteria Dietziaceae Dietzia 0.20

Otu39 Firmicutes Lachnospiraceae undefined 0.20

Otu88 Actinobacteria Actinomycetaceae Arcanobacterium 0.19

Otu157 Firmicutes Planococcaceae undefined 0.19

Otu74 Firmicutes Erysipelotrichaceae Erysipelothrix 0.19

Otu2175 Proteobacteria Comamonadaceae Polaromonas 0.19

Otu73 Bacteroidetes Chitinophagaceae undefined 0.18

Otu339 Proteobacteria Comamonadaceae undefined 0.17

Otu49 Firmicutes Lachnospiraceae undefined 0.17

Otu228 Bacteroidetes NA undefined 0.17

Otu85 Bacteroidetes Flavobacteriaceae Flavobacterium 0.16

Otu55 Firmicutes Eubacteriaceae Eubacterium 0.16

Otu213 Verrucomicrobia Verrucomicrobiaceae Luteolibacter 0.16

Otu146 Bacteroidetes Bacteroidaceae Bacteroides 0.16

Otu69 Actinobacteria Intrasporangiaceae Ornithinicoccus 0.14

Otu189 Firmicutes Clostridiaceae 1 Clostridium sensu

stricto

0.14

Otu122 Actinobacteria Micrococcaceae undefined 0.14

Otu214 Proteobacteria Moraxellaceae Psychrobacter 0.13

Otu103 Proteobacteria Xanthomonadaceae Dokdonella 0.13
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Otu58 Proteobacteria Methylobacteriaceae Methylobacterium 0.12

Otu1883 Proteobacteria Comamonadaceae Rhodoferax 0.12

Otu209 Actinobacteria Dermacoccaceae undefined 0.12

Otu130 Firmicutes Ruminococcaceae undefined 0.12

Otu105 Firmicutes Clostridiales Incertae

Sedis XI

Helcococcus 0.11

Otu89 Actinobacteria NA undefined 0.11

Otu65 Candidatus

Saccharibacteria

NA Saccharibacteria

genera incertae

sedis

0.11

Otu115 Firmicutes Streptococcaceae Streptococcus 0.11

Otu167 Bacteroidetes Cytophagaceae Hymenobacter 0.11

Otu120 Candidatus

Saccharibacteria

NA Saccharibacteria

genera incertae

sedis

0.11

Otu143 Actinobacteria Iamiaceae Aquihabitans 0.10

Otu135 Firmicutes Erysipelotrichaceae Erysipelothrix 0.09

Otu75 Fusobacteria Fusobacteriaceae undefined 0.09

Otu201 Firmicutes NA undefined 0.09

Otu95 Firmicutes Clostridiaceae 1 Clostridium sensu

stricto

0.08

Otu177 Candidatus

Saccharibacteria

NA Saccharibacteria

genera incertae

sedis

0.08

Otu174 Bacteroidetes Chitinophagaceae Ferruginibacter 0.08

Otu108 Actinobacteria Nocardiaceae Rhodococcus 0.08

Otu156 Proteobacteria Xanthomonadaceae undefined 0.08

Otu110 Proteobacteria Rhodobacteraceae undefined 0.07

Otu133 Proteobacteria NA undefined 0.07

Otu236 Actinobacteria Acidimicrobiaceae Ilumatobacter 0.07

Otu136 Actinobacteria Coriobacteriaceae Collinsella 0.07

Otu629 Proteobacteria Comamonadaceae undefined 0.06

Otu234 Actinobacteria Nakamurellaceae Nakamurella 0.06

Otu207 Actinobacteria Corynebacterineae

incertae sedis

Tomitella 0.06

Otu148 Firmicutes Lachnospiraceae Clostridium XlVb 0.06

Otu121 Firmicutes Ruminococcaceae Butyricicoccus 0.06

Otu222 Proteobacteria Xanthomonadaceae Lysobacter 0.06
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Otu1017 Proteobacteria Xanthomonadaceae Rhodanobacter 0.05

Otu691 Bacteroidetes Flavobacteriaceae Chryseobacterium 0.05

Otu211 Actinobacteria Nocardiaceae undefined 0.05

Otu270 Bacteroidetes Cyclobacteriaceae Algoriphagus 0.05

Otu1469 Bacteroidetes Flavobacteriaceae Chryseobacterium 0.04

Otu1703 Firmicutes Lachnospiraceae Blautia 0.04

Otu2423 Bacteroidetes Chitinophagaceae undefined 0.04

Otu365 Actinobacteria Nocardioidaceae Aeromicrobium 0.04

Otu332 Actinobacteria NA undefined 0.03

Otu458 Actinobacteria Microbacteriaceae undefined 0.03

Otu308 Actinobacteria Demequinaceae Demequina 0.03

Otu429 Actinobacteria NA undefined 0.03

Otu612 Actinobacteria Microbacteriaceae undefined 0.02

Bacterial abundance
Above we have examined the overall abundance of the different bacterial

phyla on Antarctic fur seal skin (Table 1). We now want to visualise the

abundance of bacterial phyla for each individual separately. We only display

phyla with more than 1% abundance in each sample.

library(phyloseq)

library(scales)

library(reshape2)

library(dplyr)

## Plot phyla relative abundance for each individual (Phyla

 with more than 1% abundance). 

## Non-normalised data (plot looks the same when rarefied O

TU table is used)

afs_phylum <- phylo.obj %>%

  tax_glom(taxrank = "Phylum") %>%                     # ag

glomerate at phylum level

  transform_sample_counts(function(x) {x/sum(x)} ) %>% # Tr

ansform to rel. abundance

  psmelt() %>%                                         # Me

lt to long format

  filter(Abundance > 0.01) %>%                         # Fi

lter out low abundance taxa

  arrange(desc(Abundance))                             # So

rt data frame alphabetically by phylum

## Define phylum colours

phylum_colors <- c("#673770", "#5F7FC7", "orange","#DA5724"

, "#508578", "#CD9BCD", "#AD6F3B", "#CBD588","#D14285", "#6

52926" , "#C84248", "#8569D5")

## Define plot labels

beach_labels <- c(Freshwater = "FWB", SSB = "SSB")
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age_labels <- c(M = "Mothers", P = "Pups")

ggplot(afs_phylum, aes(x = PlotLabel, y = Abundance, fill =

 Phylum)) + 

      facet_grid(Beach~Age, drop=TRUE,space="free",scales="

free",labeller=labeller(Age=age_labels,Beach=beach_labels))

 +

      geom_bar(stat = "identity") +

      theme_bw() +

      scale_fill_manual(values = phylum_colors) +

      theme(axis.text.x = element_blank(),axis.ticks = elem

ent_blank(),axis.title.x = element_blank(), axis.title.y = 

element_text(size=14), axis.text.y = element_text(size=12))

+

      guides(fill = guide_legend(keywidth = 1, keyheight = 

1)) +

      theme(legend.text = element_text(size = 11),legend.ti

tle = element_text(face="bold")) +

      ylab("Relative abundance (phyla > 1%) \n") +

      theme(panel.grid.major = element_blank(),panel.grid.m

inor = element_blank()) +

      theme(panel.spacing.x = unit(0, "lines"))+

      theme(strip.text.x = element_text(size=12), strip.tex

t.y = element_text(size=12))

Figure 3. Relative abundance of bacterial phyla present in each sample based on
non-normalised counts. For each sample only phyla with an abundance > 1% are
shown (not all columns add up to 1.0).

## Same plot as above but plotting the rarefied data.

library(phyloseq)

library(scales)

library(reshape2)

## Plot phyla relative abundance for each individual (Phyla

 with more than 1% abundance)

## Rarefied data

afs_phylum_rarefied <- phylo_rarefied.obj %>%

  tax_glom(taxrank = "Phylum") %>%                     # ag

glomerate at phylum level
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  transform_sample_counts(function(x) {x/sum(x)} ) %>% # Tr

ansform to rel. abundance

  psmelt() %>%                                         # Me

lt to long format

  filter(Abundance > 0.01) %>%                         # Fi

lter out low abundance taxa

  arrange(desc(Abundance))                                 

     # Sort data frame alphabetically by phylum

phylum_colors <- c("#673770", "#5F7FC7", "orange","#DA5724"

, "#508578", "#CD9BCD", "#AD6F3B", "#CBD588","#D14285", "#6

52926" , "#C84248", "#8569D5")

beach_labels <- c(Freshwater = "Freshwater Beach", SSB = "S

pecial Study Beach")

age_labels <- c(M = "Mothers", P = "Pups")

ggplot(afs_phylum_rarefied, aes(x = PlotLabel, y = Abundanc

e, fill = Phylum)) + 

      facet_grid(Beach~Age, drop=TRUE,space="free",scales="

free",labeller=labeller(Age=age_labels,Beach=beach_labels))

 +

      geom_bar(stat = "identity") +

      theme_bw()+

      scale_fill_manual(values = phylum_colors) +

      theme(axis.text.x = element_blank(),axis.ticks = elem

ent_blank(),axis.title.x = element_blank(), axis.title.y = 

element_text(size=12), axis.text.y = element_text(size=10))

+

      guides(fill = guide_legend(keywidth = 1, keyheight = 

1)) +

      theme(legend.text = element_text(size = 10),legend.ti

tle = element_text(face="bold"))+

      ylab("Relative abundance (phyla > 1%) \n") +

      theme(panel.grid.major = element_blank(),panel.grid.m

inor = element_blank())+

      theme(panel.spacing.x = unit(0, "lines"))+

      theme(strip.text.x = element_text(size=11), strip.tex

t.y = element_text(size=11))

Based on the abundance plot we might assume that bacterial diversity is

higher at the low density colony freshwater beach. This will be properly tested

below.

Alpha diversity
Alpha diversity for each sample was calculated in USEARCH. We calculated

the Jost index which is based on a family of metrics called Hill numbers of

parameter q. q determines how abundance is weighted. These indices are

transformed into the effective number of species. We use q=1, which is

equivalent to Shannon entropy and balances differently abundant OTUs.

There is an argument about whether to rarefy OTU tables to even number of

reads per sample. To test, if uneven read depth affected the calculation of

diversity measures we calculated alpha diversity as described above for the

non-normalised OTU table, and the OTU table rarefied to 10,000 reads per

sample using QIIME (samples with <10,000 reads (P24, P39) were removed

from the latter).
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## Read the table with the alpha-diversity estimates calcul

ated in USEARCH

alpha_div <- read.table("./AFSmicrobiome_SI_alphaDiversity_

Rinput_DatasetS12.txt", header=T, sep= "\t", row.names=1, n

a.strings=c("","NA"))

## Test how well the estimates for the non-normalised and r

arefied OTU tables are correlated

cor.test(alpha_div$jost1_all, alpha_div$jost1_raref)

## 

##  Pearson's product-moment correlation

## 

## data:  alpha_div$jost1_all and alpha_div$jost1_raref

## t = 280.56, df = 92, p-value < 2.2e-16

## alternative hypothesis: true correlation is not equal to

 0

## 95 percent confidence interval:

##  0.9991195 0.9996128

## sample estimates:

##       cor 

## 0.9994161

ggplot(alpha_div, aes(x = jost1_all, y=jost1_raref)) + 

  geom_point()+

  stat_smooth(method="lm", se=FALSE)+

  theme_bw()+

  ylab("Effective no. of species (rarefied data)")+

  xlab("Effective no. of species (non-normalised data)")+

  theme(panel.grid.major = element_blank(), panel.grid.mino

r = element_blank())+

  annotate("text", x=60, y=100, label= paste("r==0.99"), pa

rse=TRUE, size=6)

Figure 4. Comparison of alpha diversity estimates calculated from the non-
normalised and rarefied OTU tables.
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In the next step, we test if there is a difference in alpha-diversity between

beaches and the two age groups. We first have to establish if alpha diversity

has a gaussian distribution

library(gridExtra)

library(ggplot2)

library(dplyr)

library(lme4)

## Check distribution of alpha diversity estimates.

## Effective number of species values can be treaded as a c

ontinuous variable (not a count table anymore)

h <- ggplot(alpha_div, aes(jost1_all)) + 

        geom_histogram(binwidth=17,fill="lightgrey", colour

="gray26") +  

        theme_bw()+

        ylab("Count")+

        xlab("alpha diversity (Jost 1)")+

        theme(panel.grid.major = element_blank(), panel.gri

d.minor = element_blank())

## -> not normal

##  Square root transform data 

th <- ggplot(alpha_div, aes(sqrt(jost1_all))) + 

        geom_histogram(binwidth=1, fill="lightgrey", colour

="gray26") +  

        theme_bw()+

        ylab("Count")+

        xlab("alpha-diversity (Jost 1)")+

        theme(panel.grid.major = element_blank(), panel.gri

d.minor = element_blank())

## -> square root transformation achieves normality 

grid.arrange(h, th, ncol=2)

Figure 5. Histgram of untransformed alpha-diversity estimates (left panel) and
square-root transformed alpha-diversity estimates (right panel).

Now we can perform linear mixed models (LMM) and likelihood ratio test to

test for differences in alpha diversity between the groups. We make use of

LMMs to include pair ID as a random effect as we can not consider the two

samples of a mother-pup pair as being truly independent. The two individuals

of the pairs that were determined to be unrelated by parentage analyses are
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assigned different pair IDs.

library(lme4)

library(MuMIn)

## Combine the meta data with the diversity table

meta2.tab <- cbind(meta.tab, SampleID = row.names(meta.tab)

)

alpha_div2 <- cbind(alpha_div, SampleID = row.names(alpha_d

iv))

alpha_model.tab <- dplyr::left_join(meta2.tab, alpha_div2, 

by = "SampleID")

## In the model below PairID is used as a random effect to 

account for non-independence of a mother-pup pair. Parentag

e analysis revealed five unrelated pairs at SSB. To avoid r

emoving 10 data points from one beach we simply assign diff

erent unique PairIDs to these individuals. Pairs: "M-P49","

M-P46","M-P15","M-P13","M-P11"

## Copy the PairID column

alpha_model_unrel.tab <- cbind(alpha_model.tab, PairID2 = a

lpha_model.tab$PairID)

## Change the PairID of the pups by appending a p to the en

d of the ID

for (i in c("P49","P46","P15","P13","P11")) {

    levels(alpha_model_unrel.tab$PairID2) <- c(levels(alpha

_model_unrel.tab$PairID2),   paste0(alpha_model_unrel.tab$P

airID2[alpha_model_unrel.tab$SampleID==(i)],"p")) 

    alpha_model_unrel.tab$PairID2[alpha_model_unrel.tab$Sam

pleID==(i)] <-  paste0(paste0(alpha_model_unrel.tab$PairID2

[alpha_model_unrel.tab$SampleID==(i)],"p"))

}

## Test if alpha diversity is different between the two bea

ches and between mothers and pups

## jost1 = response variable, beach and age = predictors

## PairID used as a random effect to account for non-indepe

ndence of a pair

model1 <- lmer(sqrt(jost1_all) ~ Beach + Age + (1|PairID2),

 data=alpha_model_unrel.tab) 

## Get the model output

summary(model1)

## Linear mixed model fit by REML ['lmerMod']

## Formula: sqrt(jost1_all) ~ Beach + Age + (1 | PairID2)

##    Data: alpha_model_unrel.tab

## 

## REML criterion at convergence: 392.8

## 

## Scaled residuals: 

##      Min       1Q   Median       3Q      Max 

## -2.03922 -0.64774 -0.07021  0.68341  2.30587 

## 

## Random effects:

##  Groups   Name        Variance Std.Dev.

##  PairID2  (Intercept) 0.9049   0.9513  

##  Residual             2.7621   1.6619  

## Number of obs: 96, groups:  PairID2, 53
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## 

## Fixed effects:

##             Estimate Std. Error t value

## (Intercept)   8.2820     0.3532  23.446

## BeachSSB     -1.6417     0.4311  -3.808

## AgeP         -0.1669     0.3437  -0.486

## 

## Correlation of Fixed Effects:

##          (Intr) BchSSB

## BeachSSB -0.625       

## AgeP     -0.486  0.000

## Examine the residual plot and qqplot for violation of mo

del assumptions

plot(model1)

qqnorm(resid(model1))

## Calculate the coefficient of determination (outputs the 
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marginal and conditional R squared)

r.squaredGLMM(model1)

##       R2m       R2c 

## 0.1579665 0.3657625

## Perform likelihood ratio tests to obtain p-values

## The REML=FALSE specification is necessary for comparing 

models using the likelihood ratio test 

modelFull <- lmer(sqrt(jost1_all) ~ Beach + Age + (1|PairID

2), data=alpha_model_unrel.tab, REML=FALSE) 

modelAge <- lmer(sqrt(jost1_all) ~ Age + (1|PairID2), data=

alpha_model_unrel.tab, REML=FALSE) 

modelBeach <- lmer(sqrt(jost1_all) ~ Beach + (1|PairID2), d

ata=alpha_model_unrel.tab, REML=FALSE) 

anova(modelAge,modelFull)

## Data: alpha_model_unrel.tab

## Models:

## modelAge: sqrt(jost1_all) ~ Age + (1 | PairID2)

## modelFull: sqrt(jost1_all) ~ Beach + Age + (1 | PairID2)

##           Df    AIC    BIC  logLik deviance  Chisq Chi D

f Pr(>Chisq)    

## modelAge   4 412.61 422.86 -202.30   404.61             

                

## modelFull  5 401.42 414.24 -195.71   391.42 13.185      

1  0.0002822 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

 ' ' 1

anova(modelBeach,modelFull)

## Data: alpha_model_unrel.tab

## Models:

## modelBeach: sqrt(jost1_all) ~ Beach + (1 | PairID2)

## modelFull: sqrt(jost1_all) ~ Beach + Age + (1 | PairID2)

##            Df    AIC    BIC  logLik deviance  Chisq Chi 

Df Pr(>Chisq)

## modelBeach  4 399.66 409.92 -195.83   391.66            

             

## modelFull   5 401.42 414.24 -195.71   391.42 0.2393     

 1     0.6247

## Test if alpha diversity is different between female and 

male pups

## jost1 = response variable, beach and sex = predictors

model1 <- lm(sqrt(jost1_all) ~ Beach + Sex, data=subset(alp

ha_model.tab, Age=="P")) 

summary(model1)

## 

## Call:

## lm(formula = sqrt(jost1_all) ~ Beach + Sex, data = subse
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t(alpha_model.tab, 

##     Age == "P"))

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -4.8638 -1.5132  0.0624  1.4983  3.5700 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept)   8.3279     0.4697   17.73   <2e-16 ***

## BeachSSB     -1.2678     0.5843   -2.17   0.0353 *  

## SexM         -1.0155     0.5974   -1.70   0.0961 .  

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

 ' ' 1

## 

## Residual standard error: 2.022 on 45 degrees of freedom

## Multiple R-squared:  0.1498, Adjusted R-squared:  0.112 

## F-statistic: 3.963 on 2 and 45 DF,  p-value: 0.02599

par(mfrow=c(2,2))

plot(model1)

We find that estimates of alpha diversity are significantly higher at freshwater

beach compared to special study beach but no significant difference is found

between the age groups. 

library(gridExtra)

library(ggplot2)

## Plot alpha diversity distribution for each beach seperat

ed by age (mothers & pups)

beach <- ggplot(alpha_model.tab, aes(x = Beach, y=jost1_all

, fill=Beach)) + 

              geom_boxplot()+

              scale_x_discrete(name="", labels=c(Freshwater

="FWB", SSB="SSB"))+ 

              scale_fill_manual(name="Beach", values=c("dod
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gerblue3","firebrick2"), labels=c("FWB", "SSB"))+

              theme_bw()+

              theme(legend.position=c(0.80,0.87), legend.ti

tle = element_blank())+

              ylab("Effective no. of species (Shannon entro

py)")+

              theme(axis.text.x=element_text(size=10, margi

n = unit(c(0.3, 0, 0, 0), "cm")))+

              theme(panel.grid.major = element_blank(), pan

el.grid.minor = element_blank())

age <- ggplot(alpha_model.tab, aes(x = Beach, y=jost1_all, 

fill=Age)) + 

            geom_boxplot()+

            scale_x_discrete(name="", labels=c(Freshwater="

FWB", SSB="SSB"))+ 

            theme_bw()+

            scale_fill_manual(name="Age", values=c("bisque4

","bisque1"), labels=c( M = "Mothers", P = "Pups"))+

            theme(legend.position=c(0.80,0.87), legend.titl

e = element_blank())+

            theme(axis.text.x=element_text(size=10, margin 

= unit(c(0.3, 0, 0, 0), "cm")))+

            theme(axis.title.y = element_blank())+

            theme(panel.grid.major = element_blank(), panel

.grid.minor = element_blank())

## Use the pup subset of the data to look for differences i

n sex

model_pups.tab <- subset(alpha_model.tab, Age=="P")

## Plot alpha diversity distribution for each beach seperat

ed by pup sex

sex <- ggplot(alpha_model.tab, aes(x=Beach, y=jost1_all,fil

l=Sex)) + 

            geom_boxplot(position=position_dodge())+

            theme_bw()+

            scale_x_discrete(name="", labels=c(Freshwater="

FWB", SSB="SSB"))+ 

            scale_fill_manual(name="Sex of Pup", values=c("

darkorchid3","darkseagreen2"), labels=c( M = "Male", F = "F

emale"))+

            theme(legend.position=c(0.80,0.87), legend.titl

e = element_blank())+

            theme(axis.text.x=element_text(size=10, margin 

= unit(c(0.3, 0, 0, 0), "cm")))+

            theme(axis.title.y = element_blank())+

            theme(panel.grid.major = element_blank(), panel

.grid.minor = element_blank())

grid.arrange(beach, age, sex, ncol=3)
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Figure 6. Boxplots of alpha diversity estimates for the two breeding colonies -
freshwater beach (FWB), special study beach (SSB) - (left panel), the two age
groups (center panel), and female and male pups (right panel).

A freshwater stream is traversing through freshwater beach which could

contribute to the bacterial diversity at this breeding colony through the input of

environmental bacteria that are not present at special study beach. We thus

want to investigate if alpha diversity is also elevated at freshwater beach

when considering only the four most dominant phyla (Proteobacteria,

Bacteroidetes, Firmicutes, and Actinobacteria).

library(dplyr)

library(lme4)

library(MuMIn)

## first make list of OTUs that belong to the 4 main phyla

mainphyla_otus.obj <-  subset_taxa(phylo.obj, Phylum %in% c

("Proteobacteria", "Bacteroidetes", "Firmicutes", "Actinoba

cteria"))

mainphyla_otus.tab <- otu_table(mainphyla_otus.obj)

mainphyla_otus_list <- row.names(mainphyla_otus.tab)

## Alpha diversity for the selected OTUs is calculated in U

search.

## Load resulting alpha diversity table 

alpha_div_mainphyla.tab <- read.table("./AFSmicrobiome_SI_a

lphaDiversity_MainPhyla_Rinput_DatasetS13.txt", header=T, s

ep= "\t", row.names=1, na.strings=c("","NA"))

## Add the rownames as a column called SampleID

alpha_div_mainphyla_2.tab <- cbind(alpha_div_mainphyla.tab,

 SampleID = row.names(alpha_div_mainphyla.tab))

## Merge the tables with the meta data table

alpha_div_mainphyla_2.tab <- dplyr::left_join(meta2.tab, al

pha_div_mainphyla_2.tab, by = "SampleID")

alpha_div_mainphyla_2_unrel.tab <- cbind(alpha_div_mainphyl

a_2.tab, PairID2 = alpha_div_mainphyla_2.tab$PairID)

## Change the PairID of the pups by appending a p to the en

d of the ID

for (i in c("P49","P46","P15","P13","P11")) {

  levels(alpha_div_mainphyla_2_unrel.tab$PairID2) <- c(leve

ls(alpha_div_mainphyla_2_unrel.tab$PairID2),   paste0(alpha

_div_mainphyla_2_unrel.tab$PairID2[alpha_div_mainphyla_2_un

rel.tab$SampleID==(i)],"p")) 

  alpha_div_mainphyla_2_unrel.tab$PairID2[alpha_div_mainphy

la_2_unrel.tab$SampleID==(i)] <-  paste0(paste0(alpha_div_m
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ainphyla_2_unrel.tab$PairID2[alpha_div_mainphyla_2_unrel.ta

b$SampleID==(i)],"p"))

}

## Test if alpha diversity is different between the two bea

ches and between mothers and pups

## jost = response variable, beach and age = predictors

## PairID used as a random effect to account for non-indepe

ndence of a pair

mod <- lmer(sqrt(jost) ~ Beach + Age + (1|PairID2), data=al

pha_div_mainphyla_2_unrel.tab) 

## Get the model output

summary(mod)

## Linear mixed model fit by REML ['lmerMod']

## Formula: sqrt(jost) ~ Beach + Age + (1 | PairID2)

##    Data: alpha_div_mainphyla_2_unrel.tab

## 

## REML criterion at convergence: 365

## 

## Scaled residuals: 

##     Min      1Q  Median      3Q     Max 

## -1.9091 -0.6306 -0.1150  0.6814  2.3977 

## 

## Random effects:

##  Groups   Name        Variance Std.Dev.

##  PairID2  (Intercept) 0.7895   0.8885  

##  Residual             1.9595   1.3998  

## Number of obs: 96, groups:  PairID2, 53

## 

## Fixed effects:

##             Estimate Std. Error t value

## (Intercept)  7.08871    0.30783  23.028

## BeachSSB    -0.91041    0.37851  -2.405

## AgeP         0.07419    0.29011   0.256

## 

## Correlation of Fixed Effects:

##          (Intr) BchSSB

## BeachSSB -0.633       

## AgeP     -0.471  0.000

## Examine the residual plot and qqplot for violation of mo

del assumptions

plot(mod)
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qqnorm(resid(mod))

## Calculate the coefficient of determination (outputs the 

marginal and conditional R squared)

r.squaredGLMM(mod)

##        R2m        R2c 

## 0.07121833 0.33795176

## Perform likelihood ratio tests to obtain p-values

## The REML=FALSE specification is necessary for comparing 

models using the likelihood ratio test 

modFull <- lmer(sqrt(jost) ~ Beach + Age + (1|PairID2), dat

a=alpha_div_mainphyla_2_unrel.tab, REML=FALSE) 

modAge <- lmer(sqrt(jost) ~ Age + (1|PairID2), data=alpha_d

iv_mainphyla_2_unrel.tab, REML=FALSE) 

modBeach <- lmer(sqrt(jost) ~ Beach + (1|PairID2), data=alp

ha_div_mainphyla_2_unrel.tab, REML=FALSE) 
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anova(modAge,modFull)

## Data: alpha_div_mainphyla_2_unrel.tab

## Models:

## modAge: sqrt(jost) ~ Age + (1 | PairID2)

## modFull: sqrt(jost) ~ Beach + Age + (1 | PairID2)

##         Df    AIC    BIC  logLik deviance  Chisq Chi Df 

Pr(>Chisq)  

## modAge   4 376.43 386.69 -184.22   368.43               

            

## modFull  5 372.76 385.58 -181.38   362.76 5.6709      1 

   0.01725 *

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

 ' ' 1

anova(modBeach,modFull)

## Data: alpha_div_mainphyla_2_unrel.tab

## Models:

## modBeach: sqrt(jost) ~ Beach + (1 | PairID2)

## modFull: sqrt(jost) ~ Beach + Age + (1 | PairID2)

##          Df    AIC    BIC  logLik deviance  Chisq Chi Df

 Pr(>Chisq)

## modBeach  4 370.83 381.08 -181.41   362.83              

           

## modFull   5 372.76 385.58 -181.38   362.76 0.0672      1

     0.7955

library(ggplot2)

## Plot alpha diversity only for the two breeding colonies

ggplot(alpha_div_mainphyla_2_unrel.tab, aes(x = Beach, y=jo

st, fill=Beach)) + 

  geom_boxplot()+

  scale_x_discrete(name="", labels=c(Freshwater="FWB", SSB=

"SSB"))+ 

  scale_fill_manual(name="Beach", values=c("dodgerblue3","f

irebrick2"), labels=c("FWB", "SSB"))+

  theme_bw()+

  theme(legend.position="none")+

  ylab("Effective no. of species")+

  theme(axis.text.x=element_text(size=14, margin = unit(c(0

.2, 0, 0, 0), "cm")),axis.text.y=element_text(size=14, marg

in = unit(c(0, 0.1, 0, 0.3), "cm")), axis.title=element_tex

t(size=14))+

  theme(panel.grid.major = element_blank(), panel.grid.mino

r = element_blank())



Analysis of the Antarctic Fur Seal Skin Microbiome

R markdown file.html[11/06/2019 14:54:56]

Figure 7. Boxplot of alpha diversity estimates for the two breeding colonies -
freshwater beach (FWB), special study beach (SSB) based on the four dominant
phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria.

Alpha diversity remains significantly higher at freshwater beach when

considering only OTUs from the four most dominant phyla.

Beta diversity
To assess the difference in bacterial composition among samples (beta

diversity) we calculated Bray-Curtis and weighted UniFrac

dissimilarity/distance matrices for normalised and non-normalised OTU

tables. To normalise the counts we performed cumulative sum scaling (CSS)

with the metagenome-Seq package. UniFrac distance calculations require a

phylogenetic tree. The tree was calculated with an outgroup using Pynast in

QIIME v.1.9.1. The tree was rooted with an archaeal sequence as outgroup

and the outgroup removed before calculation of the weighted UniFrac

distance.

library(ape)

## Calculate beta diversity and differential OTU abundance 

for the two beaches and mother and pup groups

## 1. non-normalised OTU table -> Bray-Curtis and weighted 

UniFrac

## For wUniFrac distance calculation a phylogeneic tree is 

needed. The tree was calculated with an outgroup using pyna

st in QIIME

## Import phylogeny (pynast with outgroup)

tree_py_out.file <- read.tree(file="./AFSmicrobiome_SI_outg

roup_pynastAligned_filtered_Rinput_DatasetS14.tre")

## Root tree and trim outgroup from tree (label: U11044_V3V

4)

# tree_py_out.file$tip.label # For checking tip labels

## Root tree at outgroup

pytree_rooted.file <- root(tree_py_out.file, outgroup="U110

44 V3V4",resolve.root = TRUE) 
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## Remove outgroup

pynast.tre <- drop.tip(pytree_rooted.file, "U11044_V3V4") 

## Add a column to the meta data table that combines the be

ach and age variables for easier plotting of groups

meta.tab$BeachAge <- paste(meta.tab$Beach,meta.tab$Age)

meta.tab$SampleNames <- rownames(meta.tab)  

## Combine all files into a phyloseq object

otu.obj <- otu_table(otu.tab, taxa_are_rows = TRUE)

tax.obj <- tax_table(tax.tab)

meta.obj <- sample_data(meta.tab)

## Make a phyloseq object and add tree file

phylo.obj <- phyloseq(otu.obj, tax.obj, meta.obj)

phylo.obj <- merge_phyloseq(phylo.obj,pynast.tre)

First, we calculate the Bray-Curtis and weighted UniFrac distances for the

non-normalised OTU table and visualise them with principal coordinate

analysis (PCoA).

## Calulate PCoA for non-normalised OTU table with Bray-Cur

tis.

afs_pcoa_bray <- ordinate(physeq = phylo.obj, method = "PCo

A", distance = "bray")

## Plot PCoA

b <- plot_ordination(physeq = phylo.obj, ordination = afs_p

coa_bray, color = "BeachAge", shape = "BeachAge") + 

          geom_point(size = 3.5) +        

          scale_color_manual(values = c("dodgerblue3","dodg

erblue3","firebrick2","firebrick2"),name="",breaks=c("Fresh

water M", "Freshwater P", "SSB M", "SSB P"), labels=c("FWB 

mothers","FWB pups", "SSB mothers", "SSB pups"))+

          scale_shape_manual(values = c(19,1,15,0),name="",

breaks=c("Freshwater M", "Freshwater P", "SSB M", "SSB P"),

 labels=c("FWB mothers","FWB pups", "SSB mothers", "SSB pup

s"))+

          theme_bw()+

          ggtitle("non-normalised Bray-Curtis")+

          theme(legend.position="none")+

          theme(legend.background = element_rect(size=0.3,l

inetype="solid", colour ="black"))+

          theme(panel.grid.major = element_blank(),panel.gr

id.minor = element_blank())

## The plot above plots the points twice. To remove the sec

ond layer do:

b$layers <- b$layers[-1]

  

## Calulate PCoA for non-normalised OTU table with weighted

 Unifrac.

afs_pcoa_uni <- ordinate(physeq = phylo.obj, method = "PCoA

", distance = "wunifrac")

## Plot PCoA

u <- plot_ordination(physeq = phylo.obj, ordination = afs_p

coa_uni, color = "BeachAge", shape = "BeachAge") + 

          geom_point(size = 3.5) +

          scale_color_manual(values = c("dodgerblue3","dodg

erblue3","firebrick2","firebrick2"),name="",breaks=c("Fresh
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water M", "Freshwater P", "SSB M", "SSB P"), labels=c("FWB 

mothers","FWB pups", "SSB mothers", "SSB pups"))+

          scale_shape_manual(values = c(19,1,15,0),name="",

breaks=c("Freshwater M", "Freshwater P", "SSB M", "SSB P"),

 labels=c("FWB mothers","FWB pups", "SSB mothers", "SSB pup

s"))+

          theme_bw()+

          ggtitle("non-normalised weighted UniFrac")+

          theme(legend.position=c(0.83,0.19), legend.title 

= element_blank())+

          theme(legend.background = element_rect(size=0.3,l

inetype="solid", colour ="black"))+

          theme(panel.grid.major = element_blank(),panel.gr

id.minor = element_blank())

u$layers <- u$layers[-1]

grid.arrange(b, u, ncol=2)

Figure 8. Principal coordinate analysis (PCoA) based on Bray-Curtis dissimliarities
(left panel) and weighted UniFrac distances (right panel) calculated from the non-
normalised OTU table.

Prepare an OTU table normalised with cumulative sum scaling (CSS) using

the metagenomeSeq package and following the MetagenomeSeq vignette.

library("metagenomeSeq")

## Convert the phyloseq object to a metagenomeSeq object (M

Rexperiment).

## The Phyloseq_to_metagenomeSeq function is included in th

e phyloseq package.

metagenome.obj <- phyloseq_to_metagenomeSeq(phylo.obj)

## Calculate the proper percentile by which to normalize co

unts

cNstat <- metagenomeSeq::cumNormStatFast(metagenome.obj) 

# cNstat  #0.5

## Normalise counts

metagenome.obj <- metagenomeSeq::cumNorm(metagenome.obj, p 

= cNstat)

## Export the normalised count table

metag.norm.counts <- metagenomeSeq::MRcounts(metagenome.obj

, norm = TRUE)

## Add a pseudocount of 0.0001 to the table and log transfo

rm

metag.norm.counts_log <- log(metag.norm.counts+0.0001)

https://rdrr.io/bioc/metagenomeSeq/
https://rdrr.io/bioc/metagenomeSeq/f/inst/doc/metagenomeSeq.pdfc
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## Substract the value from log of pseudocount to preserve 

zeros of the original counts

metag.norm.counts_log2 <- metag.norm.counts_log-(log(0.0001

))

## Make a new phyloseq object with with the new OTU table

otu_normMG.obj <- otu_table(metag.norm.counts_log2, taxa_ar

e_rows = TRUE)

phylo_normMG.obj <- phyloseq(otu_normMG.obj, tax.obj, meta.

obj)

phylo_normMG.obj <- merge_phyloseq(phylo_normMG.obj, pynast

.tre)

Now we can calculate the Bray-Curtis and weighted UniFrac distances for the

CSS normalised OTU table.

library(gridExtra)

library(ggplot2)

##  Calulate PCoA for CSS normalised OTU table with Bray-Cu

rtis.

afs_pcoa_css_bray <- ordinate(physeq = phylo_normMG.obj, me

thod = "PCoA", distance = "bray")

## Plot PCoA

b <- plot_ordination(physeq = phylo_normMG.obj, ordination 

= afs_pcoa_css_bray, color = "BeachAge", shape = "BeachAge"

) + 

          geom_point(size = 3.5) +

          scale_color_manual(values = c("dodgerblue3","dodg

erblue3","firebrick2","firebrick2"),name="",breaks=c("Fresh

water M", "Freshwater P", "SSB M", "SSB P"), labels=c("FWB 

mothers","FWB pups", "SSB mothers", "SSB pups"))+

          scale_shape_manual(values = c(19,1,15,0),name="",

breaks=c("Freshwater M", "Freshwater P", "SSB M", "SSB P"),

 labels=c("FWB mothers","FWB pups", "SSB mothers", "SSB pup

s"))+

          theme_bw()+

          ggtitle("CSS normalised Bray-Curtis")+

          theme(legend.position=c(0.17,0.80), legend.title 

= element_blank())+

          theme(legend.background = element_rect(size=0.3,l

inetype="solid", colour ="black"))+

          theme(panel.grid.major = element_blank(), panel.g

rid.minor = element_blank())

b$layers <- b$layers[-1]

##  Calulate PCoA for CSS normalised OTU table with weighte

d Unifrac.

afs_pcoa_css_uni <- ordinate(physeq = phylo_normMG.obj, met

hod = "PCoA", distance = "wunifrac")

## Plot PCoA

u <- plot_ordination(physeq = phylo_normMG.obj, ordination 

= afs_pcoa_css_uni, color = "BeachAge", shape = "BeachAge")

 + 

          geom_point(size = 3.5) +

          scale_color_manual(values = c("dodgerblue3","dodg

erblue3","firebrick2","firebrick2"),name="",breaks=c("Fresh

water M", "Freshwater P", "SSB M", "SSB P"), labels=c("FWB 
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mothers","FWB pups", "SSB mothers", "SSB pups"))+

          scale_shape_manual(values = c(19,1,15,0), name=""

, breaks=c("Freshwater M", "Freshwater P", "SSB M", "SSB P"

), labels=c("FWB mothers","FWB pups", "SSB mothers", "SSB p

ups"))+

          theme_bw()+

          ggtitle("CSS normalised weighted UniFrac")+

          theme(legend.position="none")+

          theme(legend.background = element_rect(size=0.3,l

inetype="solid", colour ="black"))+

          theme(panel.grid.major = element_blank(), panel.g

rid.minor = element_blank())

u$layers <- u$layers[-1]

grid.arrange(b, u, ncol=2)

Figure 9. Principal coordinate analysis (PCoA) based on Bray-Curtis dissimliarity
(left panel) and weighted UniFrac distance (right panel) calculated from the CSS
normalised OTU table.

To visually examine the similarity between mothers and their pups we can

use different colour and shapes for each pair. 

library(RColorBrewer)

library(gridExtra)

library(ggplot2)

## Make plot with different colours and shapes for the pair

s

## Plot PCoA

u <- plot_ordination(physeq = phylo_normMG.obj, ordination 

= afs_pcoa_css_uni, color = "BeachAge", shape = "BeachAge")

 + 

        geom_point(size = 3.5) +

        scale_color_manual(values = c("dodgerblue3","dodger

blue3","firebrick2","firebrick2"),name="",breaks=c("Freshwa

ter M", "Freshwater P", "SSB M", "SSB P"), labels=c("FWB mo

thers","FWB pups", "SSB mothers", "SSB pups"))+

        scale_shape_manual(values = c(19,1,15,0), name="", 

breaks=c("Freshwater M", "Freshwater P", "SSB M", "SSB P"),

 labels=c("FWB mothers","FWB pups", "SSB mothers", "SSB pup

s"))+

        theme_bw()+

        ggtitle("CSS normalised weighted UniFrac")+

        theme(legend.position="none")+
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        theme(legend.position=c(0.84,0.18), legend.title = 

element_blank())+

        theme(legend.background = element_rect(size=0.3,lin

etype="solid", colour ="black"))+

        theme(panel.grid.major = element_blank(), panel.gri

d.minor = element_blank())

u$layers <- u$layers[-1]

## Define colours and shapes for the pairs

# brewer.pal(8,"Set1")

colorPairs=rep(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3"

, "darkgray" ,"gold" ,"#A65628", "#F781BF"),6)

shapePairs=c(0,0,0,0,1,1,1,1,2,2,2,2,5,5,5,5,3,3,3,3,4,4,4,

4,6,6,6,6,8,8,8,8,15,15,15,15,16,16,16,16,17,17,17,17,18,18

,18,18)

x <- plot_ordination(physeq = phylo_normMG.obj, ordination 

= afs_pcoa_css_uni, color = "PairID", shape = "PairID") + 

          geom_point(size=3.5, stroke=1) + 

          scale_color_manual(values = colorPairs,name="",br

eaks=sample_data(phylo_normMG.obj)$PairID, labels=sample_da

ta(phylo_normMG.obj)$PairID)+

          scale_shape_manual(values = shapePairs,name="",br

eaks=sample_data(phylo_normMG.obj)$PairID, labels=sample_da

ta(phylo_normMG.obj)$PairID)+

          theme_bw()+

          theme(legend.position="none")+

          ggtitle("CSS normalised weighted UniFrac pairs")+

          theme(panel.grid.major = element_blank(), panel.g

rid.minor = element_blank())

x$layers <- x$layers[-1]

grid.arrange(u,x,ncol=2)

Figure 10. Principal coordinate analysis (PCoA) plots based on weighted UniFrac
distance calculated from the CSS normalised OTU table. In the right panel the two
individuals of a mother-pup pair are labelled with the same symbol and colour.

We can also visualise the differences in Bray-Curtis and weighted UniFrac

distances within and among breeding colonies, age groups and mother-pup

pairs using boxplots.

library(phyloseq)

library(reshape2)

library(gridExtra)
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library(ggplot2)

## Calculate distance matrices

unifracDist <- phyloseq::distance(phylo_normMG.obj, method 

= "wunifrac")

brayDist <- phyloseq::distance(phylo_normMG.obj, method = "

bray")

## Convert dist element into a matrix

mx_unifrac <- as.matrix(unifracDist)

mx_bray <- as.matrix(brayDist)

## Convert from pairwise matrix to pairwise table

df_unifrac <- subset(melt(mx_unifrac), value!=0)

df_bray <- subset(melt(mx_bray), value!=0)

## Use data frame that contains information about the unrel

ated pairs

alpha_model_unrel_2.tab <- alpha_model_unrel.tab

## Collect meta data. Two data frames are needed to match t

he two samples in each row

df_meta <- subset(alpha_model_unrel_2.tab, select=c("Beach"

, "Age", "PairID2", "SampleID"))

df_meta2 <- subset(alpha_model_unrel_2.tab, select=c("Beach

","Age", "PairID2", "SampleID"))

## Rename columns

colnames(df_meta) <- c("Beach", "Age", "PairID2_1","Var1") 

 

colnames(df_meta2) <- c("Beach2","Age2", "PairID2_2", "Var2

")  

## Join the data frames

df_unifrac_meta <- dplyr::left_join(df_unifrac, df_meta, by

="Var1")

df_unifrac_meta <- dplyr::left_join(df_unifrac_meta, df_met

a2, by="Var2")

df_bray_meta <- dplyr::left_join(df_bray, df_meta, by="Var1

")

df_bray_meta <- dplyr::left_join(df_bray_meta, df_meta2, by

="Var2")

## Add columns indicating if the individuals from the same 

breeding colony, age group or the same pair

df_unifrac_meta  <- cbind(df_unifrac_meta,BeachMatch = as.f

actor(ifelse(df_unifrac_meta$Beach==df_unifrac_meta$Beach2,

0,1)))

df_unifrac_meta  <- cbind(df_unifrac_meta,AgeMatch = as.fac

tor(ifelse(df_unifrac_meta$Age==df_unifrac_meta$Age2,0,1)))

df_unifrac_meta  <- cbind(df_unifrac_meta,PairMatch = as.fa

ctor(ifelse(df_unifrac_meta$PairID2_1==df_unifrac_meta$Pair

ID2_2,0,1)))

df_bray_meta  <- cbind(df_bray_meta,BeachMatch = as.factor(

ifelse(df_bray_meta$Beach==df_bray_meta$Beach2,0,1)))

df_bray_meta  <- cbind(df_bray_meta,AgeMatch = as.factor(if

else(df_bray_meta$Age==df_bray_meta$Age2,0,1)))

df_bray_meta  <- cbind(df_bray_meta,PairMatch = as.factor(i

felse(df_bray_meta$PairID2_1==df_bray_meta$PairID2_2,0,1)))

## Draw plot

BeachUni <- ggplot(data = df_unifrac_meta, aes(x=BeachMatch

, y=value)) + 

                    geom_boxplot(fill="lightgray")+

                    theme_bw()+
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                    scale_x_discrete(name="", labels=c("0" 

="within", "1" ="among"))+ 

                    ylab("weighted UniFrac")+

                    theme(axis.text.x=element_text(size=12,

 margin = unit(c(0.3, 0, 0, 0), "cm")),axis.text.y=element_

text(size=12), axis.title.x=element_text(size=14),axis.titl

e.y=element_text(size=14))+

                    theme(panel.grid.major = element_blank(

), panel.grid.minor = element_blank())

AgeUni <- ggplot(data = df_unifrac_meta, aes(x=AgeMatch, y=

value)) + 

                    geom_boxplot(fill="lightgray")+

                    theme_bw()+

                    scale_x_discrete(name="", labels=c("0" 

="within", "1" ="among"))+ 

                    ylab("")+

                    theme(axis.text.x=element_text(size=12,

 margin = unit(c(0.3, 0, 0, 0), "cm")),axis.text.y=element_

text(size=12), axis.title.x=element_text(size=14),axis.titl

e.y=element_text(size=14))+

                    theme(panel.grid.major = element_blank(

), panel.grid.minor = element_blank())

PairUni <- ggplot(data = df_unifrac_meta, aes(x=PairMatch, 

y=value)) + 

                    geom_boxplot(fill="lightgray")+

                    theme_bw()+

                    scale_x_discrete(name="", labels=c("0" 

="pairs", "1" ="unrelated"))+ 

                    ylab("")+

                    theme(axis.text.x=element_text(size=12,

 margin = unit(c(0.3, 0, 0, 0), "cm")),axis.text.y=element_

text(size=12), axis.title.x=element_text(size=14),axis.titl

e.y=element_text(size=14))+

                    theme(panel.grid.major = element_blank(

), panel.grid.minor = element_blank())

BeachBray <- ggplot(data = df_bray_meta, aes(x=BeachMatch, 

y=value)) + 

                    geom_boxplot(fill="lightgray")+

                    theme_bw()+

                    scale_x_discrete(name="breeding colonie

s", labels=c("0" ="within", "1" ="among"))+ 

                    ylab("Bray-Curtis")+

                    theme(axis.text.x=element_text(size=12,

 margin = unit(c(0.3, 0, 0, 0), "cm")),axis.text.y=element_

text(size=12), axis.title.x=element_text(size=14),axis.titl

e.y=element_text(size=14))+

                    theme(panel.grid.major = element_blank(

), panel.grid.minor = element_blank())

AgeBray <- ggplot(data = df_bray_meta, aes(x=AgeMatch, y=va

lue)) + 

                    geom_boxplot(fill="lightgray")+

                    theme_bw()+

                    scale_x_discrete(name="age groups", lab

els=c("0" ="within", "1" ="among"))+ 

                    ylab("")+

                    theme(axis.text.x=element_text(size=12,

 margin = unit(c(0.3, 0, 0, 0), "cm")),axis.text.y=element_

text(size=12), axis.title.x=element_text(size=14),axis.titl
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e.y=element_text(size=14))+

                    theme(panel.grid.major = element_blank(

), panel.grid.minor = element_blank())

PairBray <- ggplot(data = df_bray_meta, aes(x=PairMatch, y=

value)) + 

                    geom_boxplot(fill="lightgray")+

                    theme_bw()+

                    scale_x_discrete(name="", labels=c("0" 

="pairs", "1" ="unrelated"))+ 

                    ylab("")+

                    theme(axis.text.x=element_text(size=12,

 margin = unit(c(0.3, 0, 0, 0), "cm")),axis.text.y=element_

text(size=12), axis.title.x=element_text(size=14),axis.titl

e.y=element_text(size=14))+

                    theme(panel.grid.major = element_blank(

), panel.grid.minor = element_blank())

grid.arrange(BeachUni,AgeUni,PairUni,BeachBray,AgeBray,Pair

Bray, nrow=2, ncol=3)

Figure 11. Weighted UniFrac and Bray-Curtis distances within and among
breeding colonies, age groups and mother-pup pairs.

ANOSIM – Analysis of similarities
Analysis of similarities can be used to test for similarity/dissimilarity of

bacterial communities between the breeding colonies, age groups, and

mother-pup pair groups. As input we use the CSS normalised OTU table from

above. 

Testing for differences in microbial composition between the two breeding

sites, overall and separately for mothers and pups.

library(phyloseq)

library(vegan)
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## Vegan's anosim takes a matrix as input with columns repr

esenting OTUs and rows representing samples.

## The OTU table can be transposed and exported from the ph

yloseq object as follows:

OTU1 <- as(otu_table(phylo_normMG.obj), "matrix")

## transpose if necessary

if(taxa_are_rows(phylo_normMG.obj)){OTU1 <- t(OTU1)}

## Coerce to data.frame

otu_table.tab <- as.data.frame(OTU1)

## Extract the meta data from the phyloseq object

meta_data.tab <- as(sample_data(phylo_normMG.obj), "data.fr

ame")

## Perform ANOSIM to test for dissimilarity between beaches

x <- vegan::anosim(dat = otu_table.tab, grouping = meta_dat

a.tab$Beach, distance = "bray", permutations = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table.tab, grouping = meta_data.

tab$Beach,      permutations = 10000, distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.8765 

##       Significance: 9.999e-05 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0175 0.0290 0.0414 0.0574 

## 

## Dissimilarity ranks between and within classes:

##              0%     25%    50%     75% 100%    N

## Between    1277 2661.50 3337.5 3937.25 4560 2304

## Freshwater    1  282.75  575.5 1056.25 4339 1128

## SSB         296 1165.00 1641.0 2126.25 4190 1128

# ANOSIM statistic R: 0.8765 

# Significance: 9.999e-05 

## Perform ANOSIM to test for dissimilarity between mother 

groups of the two beaches

x <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Age ==

 "M", ], grouping = meta_data.tab[meta_data.tab$Age == "M",

 ]$Beach, distance = "bray", permutations = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Age == "

M", ],      grouping = meta_data.tab[meta_data.tab$Age == "

M", ]$Beach,      permutations = 10000, distance = "bray") 

## Dissimilarity: bray 

## 
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## ANOSIM statistic R: 0.946 

##       Significance: 9.999e-05 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0373 0.0622 0.0875 0.1198 

## 

## Dissimilarity ranks between and within classes:

##             0%    25%   50%    75% 100%   N

## Between    365 680.75 836.5 984.25 1128 576

## Freshwater   1  69.75 138.5 252.00  735 276

## SSB        140 284.75 393.5 494.25  968 276

# ANOSIM statistic R: 0.946 

# Significance: 9.999e-05 

## Perform ANOSIM to test for dissimilarity between pup gro

ups of the two beaches

x <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Age ==

 "P", ], grouping = meta_data.tab[meta_data.tab$Age == "P",

 ]$Beach, distance = "bray", permutations = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Age == "

P", ],      grouping = meta_data.tab[meta_data.tab$Age == "

P", ]$Beach,      permutations = 10000, distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.8076 

##       Significance: 9.999e-05 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0324 0.0561 0.0759 0.1088 

## 

## Dissimilarity ranks between and within classes:

##             0%    25%   50%    75% 100%   N

## Between    318 639.75 806.5 959.25 1128 576

## Freshwater   1  69.75 141.5 253.25 1080 276

## SSB         93 287.50 413.5 550.25 1051 276

# ANOSIM statistic R: 0.8076 

# Significance: 9.999e-05 

Testing for differences in microbial composition between the two age groups,

overall and separately for each beach.

library(vegan)

## Perform ANOSIM to test for dissimilarity between age gro
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ups (mothers and pups)

x <- vegan::anosim(dat = otu_table.tab, grouping = meta_dat

a.tab$Age, distance = "bray", permutations = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table.tab, grouping = meta_data.

tab$Age,      permutations = 10000, distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.006069 

##       Significance: 0.21588 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0178 0.0293 0.0411 0.0577 

## 

## Dissimilarity ranks between and within classes:

##         0%     25%  50%    75% 100%    N

## Between  2 1166.25 2286 3377.0 4559 2304

## M        1 1124.75 2230 3590.0 4560 1128

## P        6 1109.25 2309 3331.5 4540 1128

# ANOSIM statistic R: 0.006069 

# Significance: 0.20998 

## Perform ANOSIM to test for dissimilarity between age gro

ups at Freshwater beach only

x <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach 

== "Freshwater", ], grouping = meta_data.tab[meta_data.tab$

Beach == "Freshwater",]$Age, distance = "bray", permutation

s = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach ==

 "Freshwater",      ], grouping = meta_data.tab[meta_data.t

ab$Beach == "Freshwater",      ]$Age, permutations = 10000,

 distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.08401 

##       Significance: 0.0039996 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0259 0.0374 0.0498 0.0647 

## 

## Dissimilarity ranks between and within classes:

##         0%    25%   50%    75% 100%   N
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## Between  2 318.50 602.5 861.50 1128 576

## M        1 282.00 558.5 827.25 1081 276

## P        6 226.75 489.0 815.00 1127 276

# ANOSIM statistic R: 0.08401 

# Significance: 0.0045995 

## Perform ANOSIM to test for dissimilarity between age gro

ups at Special study beach only

x <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach 

== "SSB", ], grouping = meta_data.tab[meta_data.tab$Beach =

= "SSB",]$Age, distance = "bray", permutations = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach ==

 "SSB",      ], grouping = meta_data.tab[meta_data.tab$Beac

h == "SSB",      ]$Age, permutations = 10000, distance = "b

ray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.08145 

##       Significance: 0.0015998 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0249 0.0352 0.0445 0.0581 

## 

## Dissimilarity ranks between and within classes:

##         0%    25%   50%    75% 100%   N

## Between  3 315.75 603.5 871.75 1127 576

## M       12 257.50 490.5 733.50 1126 276

## P        1 258.25 596.5 886.25 1128 276

# ANOSIM statistic R: 0.08145 

# Significance: 0.0014999 

Testing for differences in microbial composition between the two sexes (only

for pups), overall and separately for each beach.

library(vegan)

## Make data frames with pup information only

otu_pups.tab <- otu_table.tab[meta_data.tab$Age == "P", ]

meta_pups.tab <- meta_data.tab[meta_data.tab$Age == "P", ]

## Perform ANOSIM to test for dissimilarity between male an

d female pups

x <- vegan::anosim(dat = otu_pups.tab, grouping = meta_pups

.tab$Sex, distance = "bray", permutations = 10000)

summary(x)

## 
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## Call:

## vegan::anosim(dat = otu_pups.tab, grouping = meta_pups.t

ab$Sex,      permutations = 10000, distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: -0.007055 

##       Significance: 0.50145 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0500 0.0741 0.0998 0.1302 

## 

## Dissimilarity ranks between and within classes:

##         0%    25%   50%    75% 100%   N

## Between  2 284.00 579.0 842.50 1128 551

## F        1 269.25 554.5 856.75 1127 406

## M       29 305.00 585.0 848.00 1117 171

# ANOSIM statistic R: -0.007055 

# Significance: 0.50545 

## Perform ANOSIM to test for dissimilarity between sexes a

t Freshwater beach only

x <- vegan::anosim(dat = otu_pups.tab[meta_pups.tab$Beach =

= "Freshwater", ], grouping = meta_pups.tab[meta_pups.tab$B

each == "Freshwater",]$Sex, distance = "bray", permutations

 = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_pups.tab[meta_pups.tab$Beach == 

"Freshwater",      ], grouping = meta_pups.tab[meta_pups.ta

b$Beach == "Freshwater",      ]$Sex, permutations = 10000, 

distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.1165 

##       Significance: 0.10099 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##   90%   95% 97.5%   99% 

## 0.117 0.161 0.203 0.258 

## 

## Dissimilarity ranks between and within classes:

##         0%    25% 50%    75% 100%   N

## Between  2  86.00 148 211.50  270 135

## F        1  43.00 102 197.00  276 105

## M       29 137.75 172 214.25  248  36

# ANOSIM statistic R: 0.1165 

# Significance: 0.092991 
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## Perform ANOSIM to test for dissimilarity between sexes a

t Special study beach only

x <- vegan::anosim(dat = otu_pups.tab[meta_pups.tab$Beach =

= "SSB", ], grouping = meta_pups.tab[meta_pups.tab$Beach ==

 "SSB",]$Sex, distance = "bray", permutations = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_pups.tab[meta_pups.tab$Beach == 

"SSB",      ], grouping = meta_pups.tab[meta_pups.tab$Beach

 == "SSB",      ]$Sex, permutations = 10000, distance = "br

ay") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: -0.04223 

##       Significance: 0.71183 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0851 0.1166 0.1484 0.1896 

## 

## Dissimilarity ranks between and within classes:

##         0%   25%   50%    75% 100%   N

## Between  1 67.75 137.5 203.25  276 140

## F        3 83.00 170.0 215.00  275  91

## M        9 65.00 103.0 138.00  271  45

# ANOSIM statistic R: -0.04223 

# Significance: 0.72273 

Testing for differences in microbial composition between different mother-pup

pairs, overall and separately for each beach.

library(vegan)

## Perform ANOSIM to test for dissimilarity between differe

nt mother pup pair groups

x <- vegan::anosim(dat = otu_table.tab, grouping =meta_data

.tab$PairID, distance = "bray", permutations = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table.tab, grouping = meta_data.

tab$PairID,      permutations = 10000, distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.6145 

##       Significance: 9.999e-05 

## 

## Permutation: free

## Number of permutations: 10000

## 
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## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0909 0.1174 0.1380 0.1660 

## 

## Dissimilarity ranks between and within classes:

##           0%     25%    50%     75% 100%    N

## Between    1 1163.75 2300.5 3431.25 4560 4512

## Pair1    416  416.00  416.0  416.00  416    1

## Pair10    23   23.00   23.0   23.00   23    1

## Pair11  2385 2385.00 2385.0 2385.00 2385    1

## Pair12   174  174.00  174.0  174.00  174    1

## Pair13  1738 1738.00 1738.0 1738.00 1738    1

## Pair14   338  338.00  338.0  338.00  338    1

## Pair15   823  823.00  823.0  823.00  823    1

## Pair16   286  286.00  286.0  286.00  286    1

## Pair17  1268 1268.00 1268.0 1268.00 1268    1

## Pair18   767  767.00  767.0  767.00  767    1

## Pair19    45   45.00   45.0   45.00   45    1

## Pair2    198  198.00  198.0  198.00  198    1

## Pair20   751  751.00  751.0  751.00  751    1

## Pair21   862  862.00  862.0  862.00  862    1

## Pair22  1232 1232.00 1232.0 1232.00 1232    1

## Pair23   795  795.00  795.0  795.00  795    1

## Pair24  3983 3983.00 3983.0 3983.00 3983    1

## Pair25   704  704.00  704.0  704.00  704    1

## Pair26   218  218.00  218.0  218.00  218    1

## Pair27    53   53.00   53.0   53.00   53    1

## Pair28   434  434.00  434.0  434.00  434    1

## Pair29   403  403.00  403.0  403.00  403    1

## Pair3      8    8.00    8.0    8.00    8    1

## Pair30  1123 1123.00 1123.0 1123.00 1123    1

## Pair31   953  953.00  953.0  953.00  953    1

## Pair32   219  219.00  219.0  219.00  219    1

## Pair33   660  660.00  660.0  660.00  660    1

## Pair34   121  121.00  121.0  121.00  121    1

## Pair35   276  276.00  276.0  276.00  276    1

## Pair37   837  837.00  837.0  837.00  837    1

## Pair38  1103 1103.00 1103.0 1103.00 1103    1

## Pair39  2404 2404.00 2404.0 2404.00 2404    1

## Pair4    108  108.00  108.0  108.00  108    1

## Pair40  1507 1507.00 1507.0 1507.00 1507    1

## Pair41   784  784.00  784.0  784.00  784    1

## Pair42  1518 1518.00 1518.0 1518.00 1518    1

## Pair43  3255 3255.00 3255.0 3255.00 3255    1

## Pair44  1321 1321.00 1321.0 1321.00 1321    1

## Pair45   450  450.00  450.0  450.00  450    1

## Pair46  1094 1094.00 1094.0 1094.00 1094    1

## Pair47  1831 1831.00 1831.0 1831.00 1831    1

## Pair48   677  677.00  677.0  677.00  677    1

## Pair49   975  975.00  975.0  975.00  975    1

## Pair5   2042 2042.00 2042.0 2042.00 2042    1

## Pair6   1301 1301.00 1301.0 1301.00 1301    1

## Pair7      2    2.00    2.0    2.00    2    1

## Pair8    129  129.00  129.0  129.00  129    1

## Pair9    332  332.00  332.0  332.00  332    1

# ANOSIM statistic R: 0.6145 

# Significance: 9.999e-05 
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## Perform ANOSIM to test for dissimilarity between differe

nt mother pup pair groups from Freshwater Beach

## First remove levels from the grouping factor, otherwise 

R will give an error message (but the calculations are corr

ect either way)

pairsFW <- meta_data.tab[meta_data.tab$Beach == "Freshwater

",]$PairID

pairsFW <- droplevels(pairsFW)

x <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach 

== "Freshwater",], grouping = pairsFW, distance = "bray", p

ermutations = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach ==

 "Freshwater",      ], grouping = pairsFW, permutations = 1

0000, distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.3494 

##       Significance: 9.999e-05 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0904 0.1185 0.1424 0.1696 

## 

## Dissimilarity ranks between and within classes:

##           0%     25%    50%     75% 100%    N

## Between    1  290.75  569.5  849.25 1128 1104

## Pair10    23   23.00   23.0   23.00   23    1

## Pair12   174  174.00  174.0  174.00  174    1

## Pair16   286  286.00  286.0  286.00  286    1

## Pair19    45   45.00   45.0   45.00   45    1

## Pair2    198  198.00  198.0  198.00  198    1

## Pair20   694  694.00  694.0  694.00  694    1

## Pair21   753  753.00  753.0  753.00  753    1

## Pair22   911  911.00  911.0  911.00  911    1

## Pair23   717  717.00  717.0  717.00  717    1

## Pair24  1089 1089.00 1089.0 1089.00 1089    1

## Pair26   218  218.00  218.0  218.00  218    1

## Pair27    53   53.00   53.0   53.00   53    1

## Pair28   430  430.00  430.0  430.00  430    1

## Pair29   400  400.00  400.0  400.00  400    1

## Pair3      8    8.00    8.0    8.00    8    1

## Pair31   803  803.00  803.0  803.00  803    1

## Pair32   219  219.00  219.0  219.00  219    1

## Pair34   121  121.00  121.0  121.00  121    1

## Pair35   276  276.00  276.0  276.00  276    1

## Pair4    108  108.00  108.0  108.00  108    1

## Pair6    932  932.00  932.0  932.00  932    1

## Pair7      2    2.00    2.0    2.00    2    1

## Pair8    129  129.00  129.0  129.00  129    1

## Pair9    330  330.00  330.0  330.00  330    1

# ANOSIM statistic R: 0.3494 
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# Significance: 9.999e-05 

## Perform ANOSIM to test for dissimilarity between differe

nt mother pup pairs from Special Study Beach

pairsSSB <- meta_data.tab[meta_data.tab$Beach == "SSB",]$Pa

irID

pairsSSB <- droplevels(pairsSSB)

x <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach 

== "SSB",], grouping = pairsSSB, distance = "bray", permuta

tions = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach ==

 "SSB",      ], grouping = pairsSSB, permutations = 10000, 

distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.4081 

##       Significance: 9.999e-05 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0849 0.1110 0.1317 0.1523 

## 

## Dissimilarity ranks between and within classes:

##           0%     25%    50%     75% 100%    N

## Between    1  290.75  570.5  849.25 1128 1104

## Pair1      4    4.00    4.0    4.00    4    1

## Pair11   934  934.00  934.0  934.00  934    1

## Pair13   630  630.00  630.0  630.00  630    1

## Pair14     3    3.00    3.0    3.00    3    1

## Pair15    90   90.00   90.0   90.00   90    1

## Pair17   345  345.00  345.0  345.00  345    1

## Pair18    64   64.00   64.0   64.00   64    1

## Pair25    42   42.00   42.0   42.00   42    1

## Pair30   251  251.00  251.0  251.00  251    1

## Pair33    32   32.00   32.0   32.00   32    1

## Pair37    97   97.00   97.0   97.00   97    1

## Pair38   237  237.00  237.0  237.00  237    1

## Pair39   942  942.00  942.0  942.00  942    1

## Pair40   491  491.00  491.0  491.00  491    1

## Pair41    72   72.00   72.0   72.00   72    1

## Pair42   498  498.00  498.0  498.00  498    1

## Pair43  1099 1099.00 1099.0 1099.00 1099    1

## Pair44   377  377.00  377.0  377.00  377    1

## Pair45     6    6.00    6.0    6.00    6    1

## Pair46   234  234.00  234.0  234.00  234    1

## Pair47   688  688.00  688.0  688.00  688    1

## Pair48    36   36.00   36.0   36.00   36    1

## Pair49   163  163.00  163.0  163.00  163    1

## Pair5    807  807.00  807.0  807.00  807    1

# ANOSIM statistic R: 0.4081 

# Significance: 9.999e-05 
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We know that some of the pairs are unrelated, thus we will repeat the

analysis without these unrelated pairs.

library(vegan)

## Because the parentage analysis revealed that several mot

her-pup pairs are infact unrelated, we repeat the analysis 

removing these unrelated pairs (Pairs49,46,15,13,11).

unrelated <- c("M49","M46","M15","M13","M11","P49","P46","P

15","P13","P11")

otu_table_rel.tab <- subset(otu_table.tab, !(rownames(otu_t

able.tab) %in% unrelated))

meta_data_rel.tab <- subset(meta_data.tab, !(rownames(meta_

data.tab) %in% unrelated))

meta_data_rel.tab$PairID <- droplevels(meta_data_rel.tab$Pa

irID)

## Perform ANOSIM to test for dissimilarity between differe

nt mother pup pair groups

x <- vegan::anosim(dat = otu_table_rel.tab, grouping =meta_

data_rel.tab$PairID, distance = "bray", permutations = 1000

0)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table_rel.tab, grouping = meta_d

ata_rel.tab$PairID,      permutations = 10000, distance = "

bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.6016 

##       Significance: 9.999e-05 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0924 0.1190 0.1402 0.1661 

## 

## Dissimilarity ranks between and within classes:

##           0%     25%    50%     75% 100%    N

## Between    1  933.75 1846.5 2751.25 3655 3612

## Pair1    415  415.00  415.0  415.00  415    1

## Pair10    23   23.00   23.0   23.00   23    1

## Pair12   174  174.00  174.0  174.00  174    1

## Pair14   337  337.00  337.0  337.00  337    1

## Pair16   286  286.00  286.0  286.00  286    1

## Pair17  1128 1128.00 1128.0 1128.00 1128    1

## Pair18   741  741.00  741.0  741.00  741    1

## Pair19    45   45.00   45.0   45.00   45    1

## Pair2    198  198.00  198.0  198.00  198    1

## Pair20   726  726.00  726.0  726.00  726    1

## Pair21   819  819.00  819.0  819.00  819    1

## Pair22  1101 1101.00 1101.0 1101.00 1101    1

## Pair23   765  765.00  765.0  765.00  765    1

## Pair24  3158 3158.00 3158.0 3158.00 3158    1
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## Pair25   685  685.00  685.0  685.00  685    1

## Pair26   218  218.00  218.0  218.00  218    1

## Pair27    53   53.00   53.0   53.00   53    1

## Pair28   433  433.00  433.0  433.00  433    1

## Pair29   402  402.00  402.0  402.00  402    1

## Pair3      8    8.00    8.0    8.00    8    1

## Pair30  1024 1024.00 1024.0 1024.00 1024    1

## Pair31   895  895.00  895.0  895.00  895    1

## Pair32   219  219.00  219.0  219.00  219    1

## Pair33   644  644.00  644.0  644.00  644    1

## Pair34   121  121.00  121.0  121.00  121    1

## Pair35   276  276.00  276.0  276.00  276    1

## Pair37   798  798.00  798.0  798.00  798    1

## Pair38  1008 1008.00 1008.0 1008.00 1008    1

## Pair39  1953 1953.00 1953.0 1953.00 1953    1

## Pair4    108  108.00  108.0  108.00  108    1

## Pair40  1306 1306.00 1306.0 1306.00 1306    1

## Pair41   757  757.00  757.0  757.00  757    1

## Pair42  1315 1315.00 1315.0 1315.00 1315    1

## Pair43  2599 2599.00 2599.0 2599.00 2599    1

## Pair44  1171 1171.00 1171.0 1171.00 1171    1

## Pair45   448  448.00  448.0  448.00  448    1

## Pair47  1548 1548.00 1548.0 1548.00 1548    1

## Pair48   660  660.00  660.0  660.00  660    1

## Pair5   1705 1705.00 1705.0 1705.00 1705    1

## Pair6   1155 1155.00 1155.0 1155.00 1155    1

## Pair7      2    2.00    2.0    2.00    2    1

## Pair8    129  129.00  129.0  129.00  129    1

## Pair9    331  331.00  331.0  331.00  331    1

# ANOSIM statistic R: 0.6016 

# Significance: 9.999e-05 

## Perform ANOSIM to test for dissimilarity between differe

nt mother pup pair groups from Freshwater Beach

## First remove levels from the grouping factor, otherwise 

R will give an error message (but the calculations are corr

ect either way)

pairsFW <- meta_data_rel.tab[meta_data_rel.tab$Beach == "Fr

eshwater",]$PairID

pairsFW <- droplevels(pairsFW)

x <- vegan::anosim(dat = otu_table_rel.tab[meta_data_rel.ta

b$Beach == "Freshwater",], grouping = pairsFW, distance = "

bray", permutations = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table_rel.tab[meta_data_rel.tab$

Beach ==      "Freshwater", ], grouping = pairsFW, permutat

ions = 10000,      distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.3494 

##       Significance: 9.999e-05 

## 

## Permutation: free

## Number of permutations: 10000

## 
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## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0879 0.1129 0.1335 0.1584 

## 

## Dissimilarity ranks between and within classes:

##           0%     25%    50%     75% 100%    N

## Between    1  290.75  569.5  849.25 1128 1104

## Pair10    23   23.00   23.0   23.00   23    1

## Pair12   174  174.00  174.0  174.00  174    1

## Pair16   286  286.00  286.0  286.00  286    1

## Pair19    45   45.00   45.0   45.00   45    1

## Pair2    198  198.00  198.0  198.00  198    1

## Pair20   694  694.00  694.0  694.00  694    1

## Pair21   753  753.00  753.0  753.00  753    1

## Pair22   911  911.00  911.0  911.00  911    1

## Pair23   717  717.00  717.0  717.00  717    1

## Pair24  1089 1089.00 1089.0 1089.00 1089    1

## Pair26   218  218.00  218.0  218.00  218    1

## Pair27    53   53.00   53.0   53.00   53    1

## Pair28   430  430.00  430.0  430.00  430    1

## Pair29   400  400.00  400.0  400.00  400    1

## Pair3      8    8.00    8.0    8.00    8    1

## Pair31   803  803.00  803.0  803.00  803    1

## Pair32   219  219.00  219.0  219.00  219    1

## Pair34   121  121.00  121.0  121.00  121    1

## Pair35   276  276.00  276.0  276.00  276    1

## Pair4    108  108.00  108.0  108.00  108    1

## Pair6    932  932.00  932.0  932.00  932    1

## Pair7      2    2.00    2.0    2.00    2    1

## Pair8    129  129.00  129.0  129.00  129    1

## Pair9    330  330.00  330.0  330.00  330    1

# ANOSIM statistic R: 0.3494 

# Significance: 9.999e-05 

## Perform ANOSIM to test for dissimilarity between differe

nt mother pup pairs from Special Study Beach

pairsSSB <- meta_data_rel.tab[meta_data_rel.tab$Beach == "S

SB",]$PairID

pairsSSB <- droplevels(pairsSSB)

x <- vegan::anosim(dat = otu_table_rel.tab[meta_data_rel.ta

b$Beach == "SSB",], grouping = pairsSSB, distance = "bray",

 permutations = 10000)

summary(x)

## 

## Call:

## vegan::anosim(dat = otu_table_rel.tab[meta_data_rel.tab$

Beach ==      "SSB", ], grouping = pairsSSB, permutations =

 10000, distance = "bray") 

## Dissimilarity: bray 

## 

## ANOSIM statistic R: 0.4561 

##       Significance: 9.999e-05 

## 

## Permutation: free

## Number of permutations: 10000

## 

## Upper quantiles of permutations (null model):
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##    90%    95%  97.5%    99% 

## 0.0994 0.1294 0.1547 0.1851 

## 

## Dissimilarity ranks between and within classes:

##          0%    25%   50%    75% 100%   N

## Between   1 182.75 357.5 530.25  703 684

## Pair1     3   3.00   3.0   3.00    3   1

## Pair14    2   2.00   2.0   2.00    2   1

## Pair17  205 205.00 205.0 205.00  205   1

## Pair18   38  38.00  38.0  38.00   38   1

## Pair25   23  23.00  23.0  23.00   23   1

## Pair30  152 152.00 152.0 152.00  152   1

## Pair33   16  16.00  16.0  16.00   16   1

## Pair37   58  58.00  58.0  58.00   58   1

## Pair38  142 142.00 142.0 142.00  142   1

## Pair39  579 579.00 579.0 579.00  579   1

## Pair40  297 297.00 297.0 297.00  297   1

## Pair41   45  45.00  45.0  45.00   45   1

## Pair42  302 302.00 302.0 302.00  302   1

## Pair43  678 678.00 678.0 678.00  678   1

## Pair44  227 227.00 227.0 227.00  227   1

## Pair45    4   4.00   4.0   4.00    4   1

## Pair47  428 428.00 428.0 428.00  428   1

## Pair48   19  19.00  19.0  19.00   19   1

## Pair5   506 506.00 506.0 506.00  506   1

# ANOSIM statistic R: 0.4561 

# Significance: 9.999e-05 

Beta diversity correlations
We now want to test if beta diversity is correlated with the genetic relatedness

of individuals. For this, we use the Wang relatedness estimates and a Bray-

Curtis dissimilarity matrix calculated form the CSS normalised OTU table and

run Mantel tests.

library(reshape2)

library(dplyr)

library(vegan)

library(phyloseq)

## Save the relatedness values from the previous analysis i

n a data frame

df <- relvals[,c(2,3,4)]

## To perform mantel tests the data frame has to be transfo

rmed into a distance matrix

## First, we collect the sample names from the phyloseq obj

ect and remove P22 for which we don't have relatedness esti

mates

snames <- sample_names(phylo_normMG.obj)

snames <- snames[-which(snames=="P22")]

## Create an empty matrix and fill it with the relateness e

stimates

M <- array(0, c(length(snames), length(snames)), list(sname

s, snames))
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i <- match(df$ind1.id, snames)

j <- match(df$ind2.id, snames)

M[cbind(i,j)] <- M[cbind(j,i)] <- df$wang

##Also remove sample P22 from the phyloseq object

phylo_normMG_sub.obj <- subset_samples(phylo_normMG.obj, Sa

mpleNames != "P22")

#phylo_sub.obj <- subset_samples(phylo.obj, SampleNames != 

"P22")

## Extract OTU table from phyloseq object

OTU1 = as(otu_table(phylo_normMG_sub.obj), "matrix")

## Transpose the otu table

if(taxa_are_rows(phylo_normMG_sub.obj)){OTU1 <- t(OTU1)}

## Coerce to data.frame

OTUdf = as.data.frame(OTU1)

## Calulate bray-curtis distance

otu_dist_bray <- as.matrix(vegan::vegdist(as.matrix(OTUdf),

 method = "bray", diag=TRUE, upper=TRUE))

## Perform the mantel test

vegan::mantel(otu_dist_bray,M, method = "spearman", permuta

tion = 1000)

## 

## Mantel statistic based on Spearman's rank correlation rh

o 

## 

## Call:

## vegan::mantel(xdis = otu_dist_bray, ydis = M, method = "

spearman",      permutations = 1000) 

## 

## Mantel statistic r: 0.0179 

##       Significance: 0.2018 

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0277 0.0360 0.0430 0.0497 

## Permutation: free

## Number of permutations: 1000

Testing for differences in microbial composition between the age groups,

overall and separately for each beach.

library(vegan)

## Perform mantel test separately for pups and mothers

## Get the sample names for all mothers and for all pups

snames_M <- sample_names(subset_samples(phylo_normMG.obj, A

ge=="M" ))

snames_P <- sample_names(subset_samples(phylo_normMG.obj, A

ge=="P" & SampleNames != "P22"))

## Perform the mantel test for mothers

vegan::mantel(otu_dist_bray[snames_M,snames_M],M[snames_M,s

names_M], method = "spearman", permutation = 1000)

## 
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## Mantel statistic based on Spearman's rank correlation rh

o 

## 

## Call:

## vegan::mantel(xdis = otu_dist_bray[snames_M, snames_M], 

ydis = M[snames_M,      snames_M], method = "spearman", per

mutations = 1000) 

## 

## Mantel statistic r: 0.03241 

##       Significance: 0.18581 

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0462 0.0575 0.0653 0.0788 

## Permutation: free

## Number of permutations: 1000

## Perform the mantel test for pups

vegan::mantel(otu_dist_bray[snames_P,snames_P], M[snames_P,

snames_P], method = "spearman", permutation = 1000)

## 

## Mantel statistic based on Spearman's rank correlation rh

o 

## 

## Call:

## vegan::mantel(xdis = otu_dist_bray[snames_P, snames_P], 

ydis = M[snames_P,      snames_P], method = "spearman", per

mutations = 1000) 

## 

## Mantel statistic r: 0.0385 

##       Significance: 0.15984 

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0466 0.0579 0.0699 0.0820 

## Permutation: free

## Number of permutations: 1000

## Perform mantel test separately for pups and mothers at e

ach beach

## Get the sample names for all mothers and for all pups

sname_M_FWB <- sample_names(subset_samples(phylo_normMG.obj

, BeachAge=="Freshwater M" ))

sname_M_SSB <- sample_names(subset_samples(phylo_normMG.obj

, BeachAge=="SSB M" ))

sname_P_FWB <- sample_names(subset_samples(phylo_normMG.obj

, BeachAge=="Freshwater P" & SampleNames != "P22" ))

sname_P_SSB <- sample_names(subset_samples(phylo_normMG.obj

, BeachAge=="SSB P" ))

## Perform the mantel test

vegan::mantel(otu_dist_bray[sname_M_FWB, sname_M_FWB],M[sna

me_M_FWB, sname_M_FWB], method = "spearman", permutation = 

1000)

## 
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## Mantel statistic based on Spearman's rank correlation rh

o 

## 

## Call:

## vegan::mantel(xdis = otu_dist_bray[sname_M_FWB, sname_M_

FWB],      ydis = M[sname_M_FWB, sname_M_FWB], method = "sp

earman",      permutations = 1000) 

## 

## Mantel statistic r: -0.1672 

##       Significance: 0.98302 

## 

## Upper quantiles of permutations (null model):

##   90%   95% 97.5%   99% 

## 0.107 0.128 0.143 0.166 

## Permutation: free

## Number of permutations: 1000

vegan::mantel(otu_dist_bray[sname_M_SSB, sname_M_SSB],M[sna

me_M_SSB, sname_M_SSB], method = "spearman", permutation = 

1000)

## 

## Mantel statistic based on Spearman's rank correlation rh

o 

## 

## Call:

## vegan::mantel(xdis = otu_dist_bray[sname_M_SSB, sname_M_

SSB],      ydis = M[sname_M_SSB, sname_M_SSB], method = "sp

earman",      permutations = 1000) 

## 

## Mantel statistic r: 0.0305 

##       Significance: 0.36364 

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0955 0.1157 0.1277 0.1525 

## Permutation: free

## Number of permutations: 1000

vegan::mantel(otu_dist_bray[sname_P_FWB, sname_P_FWB],M[sna

me_P_FWB, sname_P_FWB], method = "spearman", permutation = 

1000)

## 

## Mantel statistic based on Spearman's rank correlation rh

o 

## 

## Call:

## vegan::mantel(xdis = otu_dist_bray[sname_P_FWB, sname_P_

FWB],      ydis = M[sname_P_FWB, sname_P_FWB], method = "sp

earman",      permutations = 1000) 

## 

## Mantel statistic r: -0.004504 

##       Significance: 0.53546 

## 

## Upper quantiles of permutations (null model):

##   90%   95% 97.5%   99% 
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## 0.100 0.127 0.150 0.169 

## Permutation: free

## Number of permutations: 1000

vegan::mantel(otu_dist_bray[sname_P_SSB, sname_P_SSB],M[sna

me_P_SSB, sname_P_SSB], method = "spearman", permutation = 

1000)

## 

## Mantel statistic based on Spearman's rank correlation rh

o 

## 

## Call:

## vegan::mantel(xdis = otu_dist_bray[sname_P_SSB, sname_P_

SSB],      ydis = M[sname_P_SSB, sname_P_SSB], method = "sp

earman",      permutations = 1000) 

## 

## Mantel statistic r: -0.002328 

##       Significance: 0.53846 

## 

## Upper quantiles of permutations (null model):

##    90%    95%  97.5%    99% 

## 0.0919 0.1100 0.1301 0.1541 

## Permutation: free

## Number of permutations: 1000

We find no correlation between the genetic relatedness of individuals and the

similarity of their microbial communities.

For special study beach pupping locations have been recorded in form of x-y

coordinates in a grid layout. Thus we can test if individuals that are in closer

geographical proximity also share a more similar bacterial community

composition. Similar to genetic relatedness we can test for correlation

between geographical distance on the beach and Bray-Curtis dissimilarity

using Mantel tests.

library(vegan)

## Correlation between geographical distance of SSB individ

uals and their microbiome similarity (beta diversity)

## Geographical locations for pupping events were collected

 from the viewing platform and coded as X,Y coordinates in 

a grid system

## Read the data file

locs <- read.table("./AFSmicrobiome_SI_PuppingLocations_Rin

put_DatasetS15.txt", sep = "\t", header = T) 

## Subset the dataframe for mothers

locs_M <- locs[,c(1,3,4)]

rownames(locs_M) <- locs_M$motherID 

locs_M <- locs_M[,-1]

## Subset the dataframe for pups

locs_P <- locs[,2:4]

rownames(locs_P) <- locs_P$pupID 

locs_P <- locs_P[,-1]

## Calculate a euclidean distance matrix from the geographi
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c coordinates

geo_dist_M <- as.matrix(dist(locs_M, method = "euclidean"))

geo_dist_P <- as.matrix(dist(locs_P, method = "euclidean"))

## We need to sort the Bray matrix according to the order o

f the geo_dist matrix first

sname_M_SSB_sorted <- rownames(geo_dist_M)

sname_P_SSB_sorted <- rownames(geo_dist_P)

## Perform the mantel tests

vegan::mantel(otu_dist_bray[sname_M_SSB_sorted, sname_M_SSB

_sorted],geo_dist_M, method = "spearman", permutation = 100

0)

## 

## Mantel statistic based on Spearman's rank correlation rh

o 

## 

## Call:

## vegan::mantel(xdis = otu_dist_bray[sname_M_SSB_sorted, s

name_M_SSB_sorted],      ydis = geo_dist_M, method = "spear

man", permutations = 1000) 

## 

## Mantel statistic r: 0.003016 

##       Significance: 0.47453 

## 

## Upper quantiles of permutations (null model):

##   90%   95% 97.5%   99% 

## 0.141 0.188 0.231 0.261 

## Permutation: free

## Number of permutations: 1000

vegan::mantel(otu_dist_bray[sname_P_SSB_sorted, sname_P_SSB

_sorted],geo_dist_P, method = "spearman", permutation = 100

0)

## 

## Mantel statistic based on Spearman's rank correlation rh

o 

## 

## Call:

## vegan::mantel(xdis = otu_dist_bray[sname_P_SSB_sorted, s

name_P_SSB_sorted],      ydis = geo_dist_P, method = "spear

man", permutations = 1000) 

## 

## Mantel statistic r: -0.01026 

##       Significance: 0.49451 

## 

## Upper quantiles of permutations (null model):

##   90%   95% 97.5%   99% 

## 0.145 0.179 0.231 0.270 

## Permutation: free

## Number of permutations: 1000

There is no relationship between geographical distance on the beach and

beta diversity.
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Differential abundance analysis
We now want to statistically test which OTUs show differential abundance

between the beaches and age groups. We use the DESeq2 extension in the

phyloseq package to identify these differentially abundant OTUs.

library(DESeq2)

library(phyloseq)

## Make the DESeq object using the phyloseq function. Use b

each as variable.

dsBeach <- phyloseq_to_deseq2(phylo.obj, ~ Beach)

## Run test for differential abundance using the negative b

inomial Wald test.

dsBeachtest <- DESeq(dsBeach, test="Wald", fitType="paramet

ric")

## Extract the result table that contains log2FC and adjust

ed p-values (FDR corrected)

res_beach <- results(dsBeachtest,cooksCutoff = FALSE)

## Use an alpha cutoff of 0.01

alpha <- 0.01

sigtab_beach <- res_beach[which(res_beach$padj < alpha), ]

sigtab_beach <- cbind(as(sigtab_beach, "data.frame"), as(ta

x_table(phylo.obj)[rownames(sigtab_beach), ], "matrix"))

paste( "Overall, we find", length(sigtab_beach$log2FoldChan

ge)," significantly differentially abundant OTUs with", len

gth(which(sigtab_beach$log2FoldChange < 0)), "being signifi

cantly more abundant at FWB and", length(which(sigtab_beach

$log2FoldChange > 0)), "at SSB.")

## [1] "Overall, we find 655  significantly differentially 

abundant OTUs with 380 being significantly more abundant at

 FWB and 275 at SSB."

## For plotting remove entries for which the phylum level c

lassification is not available

sigtab_beach <- sigtab_beach[-which(is.na(sigtab_beach$Phyl

um)), ]

## Order results by the largest fold change

x_beach <- tapply(sigtab_beach$log2FoldChange, sigtab_beach

$Phylum, function(x_beach) max(x_beach))

x_beach <- sort(x_beach, TRUE)

sigtab_beach$Phylum <- factor(as.character(sigtab_beach$Phy

lum), levels=names(x_beach))

## Repeat analyis with age as variable.

dsAge = phyloseq_to_deseq2(phylo.obj, ~ Age)

dsAgetest = DESeq(dsAge, test="Wald", fitType="parametric")

res_age <- results(dsAgetest,cooksCutoff = FALSE)

alpha <- 0.01

sigtab_age <- res_age[which(res_age$padj < alpha), ]

sigtab_age <- cbind(as(sigtab_age, "data.frame"), as(tax_ta

ble(phylo.obj)[rownames(sigtab_age), ], "matrix"))

paste( "Overall, we find", length(sigtab_age$log2FoldChange

)," significantly differentially abundant OTUs with", lengt
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h(which(sigtab_age$log2FoldChange < 0)), "being significant

ly more abundant in mothers and", length(which(sigtab_age$l

og2FoldChange > 0)), "in pups.")

## [1] "Overall, we find 155  significantly differentially 

abundant OTUs with 138 being significantly more abundant in

 mothers and 17 in pups."

sigtab_age <- sigtab_age[-which(is.na(sigtab_age$Phylum)), 

]

x_age <- tapply(sigtab_age$log2FoldChange, sigtab_age$Phylu

m, function(x_age) max(x_age))

x_age <- sort(x_age, TRUE)

sigtab_age$Phylum <- factor(as.character(sigtab_age$Phylum)

, levels=names(x_age))

We find more differentially abundant OTUs between the two breeding

colonies and than between the two age groups. We can plot the results to

further examine the magnitude of the fold changes and which phyla the

differentially abundant OTUs belong to.

library(ggplot2)

## Assign colours to the phyla (matching those from the rel

ative abundance plot)

phylcols <- c(Acidobacteria = "#673770",Actinobacteria = "#

5F7FC7", Armatimonadetes = "#ffe119", Bacteroidetes = "oran

ge", BRC1 = "#808000",Candidatus_Saccharibacteria = "#DA572

4", Chloroflexi = "#3cb44b", Cyanobacteria = "#508578",Dein

ococcus_Thermus = "#CD9BCD",Firmicutes = "#AD6F3B",Fusobact

eria = "#CBD588",Gemmatimonadetes = "#fabebe",Ignavibacteri

ae = "#aaffc3",Microgenomates = "#808080",Planctomycetes = 

"#D14285",Proteobacteria = "#652926",SR1 = "#000080",Synerg

istetes = "#46f0f0",Tenericutes = "#C84248",Verrucomicrobia

 = "#8569D5")

## Change name of Candidatus_Saccharibacteria and Deinococc

us_Thermus back to the original names used in the table

names(phylcols)[which(names(phylcols)=="Candidatus_Sacchari

bacteria")] <- "Candidatus Saccharibacteria"

names(phylcols)[which(names(phylcols)=="Deinococcus_Thermus

")] <- "Deinococcus-Thermus"

## Make the plot

ggplot(sigtab_beach, aes(x=Phylum, y=log2FoldChange, colour

=Phylum)) +

            geom_point(size=2.5) + 

            geom_hline(yintercept = 0,linetype = 2, colour=

"gray44")+

            theme_bw()+

            theme(axis.text.x = element_blank(),axis.ticks.

x = element_blank(),axis.title.x = element_blank(), axis.ti

tle.y = element_text(size=14), axis.text.y = element_text(s

ize=12))+

            guides(colour = guide_legend(override.aes = lis

t(shape = 15, size = 5.5, linetype=0), ncol = 1))+

            theme(legend.text = element_text( size = 10),le

gend.title = element_text(face="bold"))+
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            ylab("log2FC")+

            ggtitle("DA between beaches")+

            expand_limits(y=c(-7.5,11))+

            scale_colour_manual(values=phylcols)+

            theme(panel.grid.major = element_blank(), panel

.grid.minor = element_blank())

Figure 12. Differential abundance of OTUs between the two breeding colonies.
OTU phylum memberships are represented by the different colours. OTUs above 0
are significantly more abundant at SSB and OTUs below 0 are significantly more
abundant at FWB.

library(ggplot2)

## Assign colours to the phyla (matching those from the rel

ative abundance plot)

phylcols <- c(Acidobacteria = "#673770",Actinobacteria = "#

5F7FC7", Armatimonadetes = "#ffe119", Bacteroidetes = "oran

ge", BRC1 = "#808000",Candidatus_Saccharibacteria = "#DA572

4", Chloroflexi = "#3cb44b", Cyanobacteria = "#508578",Dein

ococcus_Thermus = "#CD9BCD",Firmicutes = "#AD6F3B",Fusobact

eria = "#CBD588",Gemmatimonadetes = "#fabebe",Ignavibacteri

ae = "#aaffc3",Microgenomates = "#808080",Planctomycetes = 

"#D14285",Proteobacteria = "#652926",SR1 = "#000080",Synerg

istetes = "#46f0f0",Tenericutes = "#C84248",Verrucomicrobia

 = "#8569D5")

## Change name of Candidatus_Saccharibacteria and Deinococc

us_Thermus back to the original names used in the table

names(phylcols)[which(names(phylcols)=="Candidatus_Sacchari

bacteria")] <- "Candidatus Saccharibacteria"

names(phylcols)[which(names(phylcols)=="Deinococcus_Thermus

")] <- "Deinococcus-Thermus"

## Make the plot

ggplot(sigtab_age, aes(x=Phylum, y=log2FoldChange, colour=P

hylum)) +

          geom_point(size=2.5) + 

          geom_hline(yintercept = 0,linetype = 2, colour="g

ray44")+

          theme_bw()+

             theme(axis.text.x = element_blank(),axis.ticks

.x = element_blank(),axis.title.x = element_blank(), axis.t
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itle.y = element_text(size=14), axis.text.y = element_text(

size=12))+

          guides(colour = guide_legend(override.aes = list(

shape = 15, size = 5.5, linetype=0), ncol = 1))+

          theme(legend.text = element_text( size = 10),lege

nd.title = element_text(face="bold"))+

          expand_limits(y=c(-7.5,11))+

          ylab("log2FC")+

          ggtitle("DA between age groups")+

          scale_colour_manual(values=phylcols)+

          theme(panel.grid.major = element_blank(), panel.g

rid.minor = element_blank())

Figure 13. Differential abundance of OTUs between the two age groups. OTU
phylum memberships are represented by the different colours. OTUs above 0 are
significantly more abundant in pups and OTUs below 0 are significantly more
abundant in mothers.

library(DESeq2)

## Find the differences between the age groups at each beac

h and within each age group between the beaches

## Make subsets of the data

phylo_FW.obj = subset_samples(phylo.obj, sample_data(phylo.

obj)$Beach == "Freshwater")

phylo_SSB.obj = subset_samples(phylo.obj, sample_data(phylo

.obj)$Beach == "SSB")

phylo_M.obj = subset_samples(phylo.obj, sample_data(phylo.o

bj)$Age == "M")

phylo_P.obj = subset_samples(phylo.obj, sample_data(phylo.o

bj)$Age == "P")

## Run DESeq2 for Freshwater Beach (compare age groups with

in FWB)

dsBeach_FW = phyloseq_to_deseq2(phylo_FW.obj, ~ Age)

## Run test for differential abundance using the negative b

inomial Wald test.

dsBeachtest_FW = DESeq(dsBeach_FW, test="Wald", fitType="pa

rametric")

## Extract the result table that contains logFC and adjuste

d p-values (FDR corrected)

res_FW <- results(dsBeachtest_FW,cooksCutoff = FALSE)
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## Use a strict alpha cutoff of 0.01

alpha <- 0.01

sigtab_FW <- res_FW[which(res_FW$padj < alpha), ]

sigtab_FW <- cbind(as(sigtab_FW, "data.frame"), as(tax_tabl

e(phylo_FW.obj)[rownames(sigtab_FW), ], "matrix"))

# dim(sigtab_FW) #69 13

sigtab_FW <- sigtab_FW[-which(is.na(sigtab_FW$Phylum)), ]

## Order results by the largest fold change

x_FW <- tapply(sigtab_FW$log2FoldChange, sigtab_FW$Phylum, 

function(x_FW) max(x_FW))

x_FW <- sort(x_FW, TRUE)

sigtab_FW$Phylum <- factor(as.character(sigtab_FW$Phylum), 

levels=names(x_FW))

## Run DESeq2 for Special Study Beach (compare age groups w

ithin SSB)

dsBeach_SSB = phyloseq_to_deseq2(phylo_SSB.obj, ~ Age)

dsBeachtest_SSB = DESeq(dsBeach_SSB, test="Wald", fitType="

parametric")

res_SSB <- results(dsBeachtest_SSB,cooksCutoff = FALSE)

alpha <- 0.01

sigtab_SSB <- res_SSB[which(res_SSB$padj < alpha), ]

sigtab_SSB <- cbind(as(sigtab_SSB, "data.frame"), as(tax_ta

ble(phylo_SSB.obj)[rownames(sigtab_SSB), ], "matrix"))

# dim(sigtab_SSB) #64 13

sigtab_SSB <- sigtab_SSB[-which(is.na(sigtab_SSB$Phylum)), 

]

x_SSB <- tapply(sigtab_SSB$log2FoldChange, sigtab_SSB$Phylu

m, function(x_SSB) max(x_SSB))

x_SSB <- sort(x_SSB, TRUE)

sigtab_SSB$Phylum <- factor(as.character(sigtab_SSB$Phylum)

, levels=names(x_SSB))

## Run DESeq2 for mothers (compare the two beaches for this

 age group).

dsBeach_M = phyloseq_to_deseq2(phylo_M.obj, ~ Beach)

dsBeachtest_M = DESeq(dsBeach_M, test="Wald", fitType="para

metric")

res_M <- results(dsBeachtest_M,cooksCutoff = FALSE)

alpha <- 0.01

sigtab_M <- res_M[which(res_M$padj < alpha), ]

sigtab_M <- cbind(as(sigtab_M, "data.frame"), as(tax_table(

phylo_M.obj)[rownames(sigtab_M), ], "matrix"))

# dim(sigtab_M) #610  13

sigtab_M <- sigtab_M[-which(is.na(sigtab_M$Phylum)), ]

x_M <- tapply(sigtab_M$log2FoldChange, sigtab_M$Phylum, fun

ction(x_M) max(x_M))

x_M <- sort(x_M, TRUE)

sigtab_M$Phylum <- factor(as.character(sigtab_M$Phylum), le

vels=names(x_M))

## Run DESeq2 for pups (compare the two beaches for this ag

e group).

dsBeach_P = phyloseq_to_deseq2(phylo_P.obj, ~ Beach)

dsBeachtest_P = DESeq(dsBeach_P, test="Wald", fitType="para

metric")

res_P <- results(dsBeachtest_P,cooksCutoff = FALSE)

alpha <- 0.01

sigtab_P <- res_P[which(res_P$padj < alpha), ]
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sigtab_P <- cbind(as(sigtab_P, "data.frame"), as(tax_table(

phylo_P.obj)[rownames(sigtab_P), ], "matrix"))

# dim(sigtab_P) #487  13

sigtab_P <- sigtab_P[-which(is.na(sigtab_P$Phylum)), ]

x_P = tapply(sigtab_P$log2FoldChange, sigtab_P$Phylum, func

tion(x_P) max(x_P))

x_P = sort(x_P, TRUE)

sigtab_P$Phylum = factor(as.character(sigtab_P$Phylum), lev

els=names(x_P))

## Which groups have more abundant OTUs?

paste( "At FWB", length(which(sigtab_FW$log2FoldChange < 0)

), "OTUs are significantly more abundant in mothers and", l

ength(which(sigtab_FW$log2FoldChange > 0)), "in pups.")

## [1] "At FWB 37 OTUs are significantly more abundant in m

others and 40 in pups."

paste( "At SSB", length(which(sigtab_SSB$log2FoldChange < 0

)), "OTUs are significantly more abundant in mothers and", 

length(which(sigtab_SSB$log2FoldChange > 0)), "in pups.")

## [1] "At SSB 55 OTUs are significantly more abundant in m

others and 8 in pups."

paste( "In the mother cohort", length(which(sigtab_M$log2Fo

ldChange < 0)), "OTUs are significantly more abundant at FW

B and", length(which(sigtab_M$log2FoldChange > 0)), "at SSB

.")

## [1] "In the mother cohort 337 OTUs are significantly mor

e abundant at FWB and 242 at SSB."

paste( "In the pup cohort", length(which(sigtab_P$log2FoldC

hange < 0)), "OTUs are significantly more abundant at FWB a

nd", length(which(sigtab_P$log2FoldChange > 0)), "at SSB.")

## [1] "In the pup cohort 298 OTUs are significantly more a

bundant at FWB and 164 at SSB."

library(cowplot)

library(ggplot2)

## Assign colours to the phyla (matching those from the rel

ative abundance plot)

phylcols <- c(Acidobacteria = "#673770",Actinobacteria = "#

5F7FC7", Armatimonadetes = "#ffe119", Bacteroidetes = "oran

ge", BRC1 = "#808000",Candidatus_Saccharibacteria = "#DA572

4", Chloroflexi = "#3cb44b", Cyanobacteria = "#508578",Dein

ococcus_Thermus = "#CD9BCD",Firmicutes = "#AD6F3B",Fusobact

eria = "#CBD588",Gemmatimonadetes = "#fabebe",Ignavibacteri

ae = "#aaffc3",Microgenomates = "#808080",Planctomycetes = 

"#D14285",Proteobacteria = "#652926",SR1 = "#000080",Synerg
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istetes = "#46f0f0",Tenericutes = "#C84248",Verrucomicrobia

 = "#8569D5")

names(phylcols)[which(names(phylcols)=="Candidatus_Sacchari

bacteria")] <- "Candidatus Saccharibacteria"

names(phylcols)[which(names(phylcols)=="Deinococcus_Thermus

")] <- "Deinococcus-Thermus"

## Make the plot

FW <- ggplot(sigtab_FW, aes(x=Phylum, y=log2FoldChange, col

our=Phylum)) +

          geom_point(size=2) + 

          geom_hline(yintercept = 0,linetype = 2, colour="g

ray44")+

          theme_bw()+

          theme(axis.text.x = element_blank(),axis.ticks.x 

= element_blank(),axis.title.x = element_blank(),axis.text.

y = element_text(size=10))+

          guides(colour = guide_legend(override.aes = list(

shape = 15, size = 5.5, linetype=0), ncol = 1))+

          theme(legend.text = element_text( size = 10),lege

nd.title = element_text(face="bold"))+

          ylab("log2FC")+

          expand_limits(y=c(-7.5,11))+

          theme(legend.position="none")+

          ggtitle("DA between age groups at FWB")+

          scale_colour_manual(values=phylcols)+

          theme(panel.grid.major = element_blank(),panel.gr

id.minor = element_blank())

## Make the plot

SSB <- ggplot(sigtab_SSB, aes(x=Phylum, y=log2FoldChange, c

olour=Phylum)) +

        geom_point(size=2) + 

        geom_hline(yintercept = 0,linetype = 2, colour="gra

y44")+

        theme_bw()+

        theme(axis.text.x = element_blank(),axis.ticks.x = 

element_blank(),axis.title.x = element_blank(),axis.text.y 

= element_text(size=10))+

        guides(colour = guide_legend(override.aes = list(sh

ape = 15, size = 5.5, linetype=0), ncol = 1))+

        theme(legend.text = element_text( size = 10),legend

.title = element_text(face="bold"))+

        ylab("log2FC")+

        expand_limits(y=c(-7.5,11))+

        theme(legend.position="none")+

        ggtitle("DA between age groups at SSB")+

        scale_colour_manual(values=phylcols)+

        theme(panel.grid.major = element_blank(),panel.grid

.minor = element_blank())

## Make the plot

M <- ggplot(sigtab_M, aes(x=Phylum, y=log2FoldChange, colou

r=Phylum)) +

        geom_point(size=2) + 

        geom_hline(yintercept = 0,linetype = 2, colour="gra

y44")+

        theme_bw()+

        theme(axis.text.x = element_blank(),axis.ticks.x = 
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element_blank(),axis.title.x = element_blank(),axis.text.y 

= element_text(size=10))+

        guides(colour = guide_legend(override.aes = list(sh

ape = 15, size = 5.5, linetype=0), ncol = 1))+

        theme(legend.text = element_text( size = 10),legend

.title = element_text(face="bold"))+

        ylab("log2FC")+

        expand_limits(y=c(-7.5,11))+

        scale_colour_manual(values=phylcols)+

        ggtitle("DA in mothers between beaches")+

        theme(legend.position="none")+

        theme(panel.grid.major = element_blank(),panel.grid

.minor = element_blank())

## Make the plot

P <- ggplot(sigtab_P, aes(x=Phylum, y=log2FoldChange, colou

r=Phylum)) +

        geom_point(size=2) + 

        geom_hline(yintercept = 0,linetype = 2, colour="gra

y44")+

        theme_bw()+

        theme(axis.text.x = element_blank(),axis.ticks.x = 

element_blank(), axis.title.x = element_blank(),axis.text.y

 = element_text(size=10))+

        guides(colour = guide_legend(override.aes = list(sh

ape = 15, size = 5.5, linetype=0), ncol = 1))+

        theme(legend.text = element_text( size = 10),legend

.title = element_text(face="bold"))+

        ylab("log2FC")+

        expand_limits(y=c(-7.5,11))+

        scale_colour_manual(values=phylcols)+

        ggtitle("DA in pups between beaches")+

        theme(legend.position="none")+

        theme(panel.grid.major = element_blank(),panel.grid

.minor = element_blank())

plot_grid(M,FW,P,SSB, align = "v",axis="r" ,nrow=2, ncol=2)

Figure 14. Differential abundance of OTUs between the two breeding colonies and
the two age groups. OTU phylum memberships are represented by the different
colours. OTUs above 0 are significantly more abundant at SSB/in pups and OTUs
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below 0 are significantly more abundant at FWB/in mothers.

Heatmap of OTU abundance
The OTU abundance for each sample can also be visualised using a

heatmap. As input for abundance we use the CSS normalised OTU counts

with added pseudocount.

#library(phyloseq)

library(phyloseq)

library(pheatmap)

library(dplyr)

## Define colours for the heatmap and

## the colour gradient for abundance

heatcols <- c("#EFDEC0","#EFBE95", "#E48889", "#DA577C", "#

C13177", "#901A81", "#640089", "#480076", "#350155")

heatmapCols <- colorRampPalette(heatcols)(50)

## Define the phyla colours

phylcols <- c(Acidobacteria = "#673770",Actinobacteria = "#

5F7FC7", Armatimonadetes = "#ffe119", Bacteroidetes = "oran

ge", BRC1 = "#808000",Candidatus_Saccharibacteria = "#DA572

4", Chloroflexi = "#3cb44b", Cyanobacteria = "#508578",Dein

ococcus_Thermus = "#CD9BCD",Firmicutes = "#AD6F3B",Fusobact

eria = "#CBD588",Gemmatimonadetes = "#fabebe",Ignavibacteri

ae = "#aaffc3",Microgenomates = "#808080",Planctomycetes = 

"#D14285",Proteobacteria = "#652926",SR1 = "#000080",Synerg

istetes = "#46f0f0",Tenericutes = "#C84248",Verrucomicrobia

 = "#8569D5",undefined = "lightgrey")

## Correct some names to match the naming in the table 

names(phylcols)[which(names(phylcols)=="Candidatus_Sacchari

bacteria")] <- "Candidatus Saccharibacteria"

names(phylcols)[which(names(phylcols)=="Deinococcus_Thermus

")] <- "Deinococcus-Thermus"

## Define the colours used for mothers and pups at each bea

ch

samplecols <- c(FWB_mothers= "dodgerblue3",FWB_pups = "#d7e

4f5", SSB_mothers = "firebrick2", SSB_pups = "#ffd6d7")

## Make a list of the colour vectors for the heatmap functi

on

ann_colors <- list(Phylum = phylcols, BeachAge = samplecols

)

## Correct the names to match the naming in the table

names(ann_colors$BeachAge)[which(names(ann_colors$BeachAge)

=="FWB_mothers")] <- "FWB mothers"

names(ann_colors$BeachAge)[which(names(ann_colors$BeachAge)

=="FWB_pups")] <- "FWB pups"

names(ann_colors$BeachAge)[which(names(ann_colors$BeachAge)

=="SSB_mothers")] <- "SSB mothers"

names(ann_colors$BeachAge)[which(names(ann_colors$BeachAge)

=="SSB_pups")] <- "SSB pups"

## The abundance will be based on the CSS normalised OTU co

unts with added pseudocount (input for the beta diversity a
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nalysis)

## Extract the taxonomic information for OTUs from the phyl

oseq object

heatmap.tab <- as.data.frame(as(tax_table(phylo.obj)[rownam

es(metag.norm.counts_log2), ], "matrix"))

## Make a data frame that has the sample meta information a

bout beach and age of the individuals

## (The rownames have to be present to plot the heatmap)

colannot <- as.data.frame(meta_data.tab$BeachAge, row.names

 = rownames(meta_data.tab))

colnames(colannot) <- "BeachAge"

levels(colannot$BeachAge) <- c(levels(colannot$BeachAge), "

FWB mothers","SSB mothers","FWB pups", "SSB pups" ) 

colannot$BeachAge[which(colannot$BeachAge=="Freshwater M")]

 <- "FWB mothers"

colannot$BeachAge[which(colannot$BeachAge=="Freshwater P")]

 <- "FWB pups"

colannot$BeachAge[which(colannot$BeachAge=="SSB M")] <- "SS

B mothers"

colannot$BeachAge[which(colannot$BeachAge=="SSB P")] <- "SS

B pups"

colannot$BeachAge <- droplevels(colannot$BeachAge)

## Make a data frame that contains the phylum information f

or each OTU 

## (The rownames have to be present to plot the heatmap)

rowannot <- as.data.frame(heatmap.tab[,"Phylum"])

colnames(rowannot) <- "Phylum"

levels(rowannot$Phylum) <- c(levels(rowannot$Phylum), "unde

fined") 

rowannot$Phylum[is.na(rowannot$Phylum)] <- "undefined"

rowannot$Phylum <- droplevels(rowannot$Phylum)

## Plot the heatmap

pheatmap::pheatmap(metag.norm.counts_log2, color=heatmapCol

s, annotation_col=colannot, annotation_row=rowannot, show_r

ownames = FALSE, annotation_colors=ann_colors, drop_levels=

 TRUE, fontsize_row = 1, fontsize_col = 4, annotation_names

_row=FALSE, annotation_names_col=FALSE)
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Figure 15. Heatmap of OTU abundance. Each column corresponds to one
individual and each row corresponds to an OTUs. Abundance is represented by the
log transformed CSS normalised OTU counts with added pseudocounts. The
horizontal bar above the plot indicates which breeding colony and age group an
individual belongs to. The vertical bar on the left-hand side of the plot represents
the phylum membership of each OTU.

Heterozygosity & bacterial diversity
We want to explore the relationship between heterozygosity and bacterial

diversity as it has been suggested that the host can excert some control over

its microbial community. We hypothesise that the strength of control over the

microbiota depends on the heterozygosity of an individual. Standardised

multilocus heterozygosity (sMLH, total number of heterozygous loci in an

individual divided by the sum of average observed heterozygosities in the

population over the subset of loci successfully typed in the focal individual)

was calculated for each individual with inbreedR.

We use LMMs and include interaction terms to investigate whether the effect

of an individual’s heterozygosity on alpha diversity is different between the

age classes and breeding colonies.

library(inbreedR)

library(dplyr)

library(ggplot2)

library(lme4)

library(MuMIn)
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## Calculate individual heterozygozity and correlate with a

lpha diversity

## Import the preformatted microsatellite table and remove 

NAs

msats <- read.table("./AFSmicrobiome_SI_MicrosatelliteGenot

ypes50_P22removed_colnames_Rinput_DatasetS5.1.txt",header=T

RUE,row.names = 1, sep= "\t", na.strings=c("","NA"))

is.na(msats) <- !msats

## Convert to inbreedR format

genos <- inbreedR::convert_raw(msats)  

## Calculate heterozygosity (sMLH)

heterozygosity <- inbreedR::sMLH(genos)

## Use the alpha diversity estimates from the alpha_model_u

nrel.tab

het_alpha.tab <- as.data.frame(subset(alpha_model_unrel.tab

, select=c("Beach","Age","PairID","SampleID","jost1_all","P

airID2")))

heterozygosity <- as.data.frame(heterozygosity)

heterozygosity["SampleID"] <- rownames(heterozygosity)

het_alpha.tab <- left_join(het_alpha.tab, heterozygosity, b

y="SampleID")

het_alpha.tab["BeachAge"] <- paste(het_alpha.tab$Beach,het_

alpha.tab$Age )

## Run LMMs to examine the relationship between heterozygos

ity and bacterial alpha diversity. We include two interacti

on terms to investigate if the effect of an individual's he

terozygosity on alpha diversity is different between the br

eeding colonies and the age classes.

## Centre heterozygosity

het_alpha.tab <- cbind(het_alpha.tab, sHeteroz = scale(het_

alpha.tab$heterozygosity,scale=FALSE,center = TRUE))

## Run the full model for FWB

model_full <- lmer(sqrt(jost1_all) ~ sHeteroz + Beach + Age

 + sHeteroz*Beach + sHeteroz*Age + (1|PairID2), data = het_

alpha.tab)

## Check the residual plots

plot(model_full)
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qqnorm(resid(model_full))

## Examine the model output

summary(model_full)
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## Linear mixed model fit by REML ['lmerMod']

## Formula: sqrt(jost1_all) ~ sHeteroz + Beach + Age + sHet

eroz * Beach +  

##     sHeteroz * Age + (1 | PairID2)

##    Data: het_alpha.tab

## 

## REML criterion at convergence: 367.6

## 

## Scaled residuals: 

##     Min      1Q  Median      3Q     Max 

## -2.1589 -0.6977 -0.0091  0.6718  2.3245 

## 

## Random effects:

##  Groups   Name        Variance Std.Dev.

##  PairID2  (Intercept) 0.3123   0.5588  

##  Residual             3.0917   1.7583  

## Number of obs: 95, groups:  PairID2, 53

## 

## Fixed effects:

##                   Estimate Std. Error t value

## (Intercept)         8.3744     0.3350  24.995

## sHeteroz           -9.8477     3.8534  -2.556

## BeachSSB           -1.6848     0.3936  -4.281

## AgeP               -0.2879     0.3682  -0.782

## sHeteroz:BeachSSB   7.7464     4.9056   1.579

## sHeteroz:AgeP      -0.3200     4.9871  -0.064

## 

## Correlation of Fixed Effects:

##             (Intr) sHetrz BchSSB AgeP   sH:BSS

## sHeteroz    -0.104                            

## BeachSSB    -0.593  0.001                     

## AgeP        -0.536  0.103 -0.010              

## sHtrz:BcSSB -0.020 -0.483 -0.001 -0.001       

## sHeterz:AgP  0.092 -0.482  0.001  0.008 -0.230

## Calculates the marginal (only for fixed effects) and con

ditional (for all effects) R squared for the LMM

r.squaredGLMM(model_full)

##       R2m       R2c 

## 0.2354759 0.3056198

## Likelihood ratio tests

## anova does not work if missing data are present. Heteroz

ygosity could not be calculated for one individual due to m

issing genotypes. This invididual will be removed from the 

table first. This does not change the results of the model 

above. 

het_alpha2.tab <- het_alpha.tab

het_alpha2.tab <- het_alpha2.tab[-which(is.na(het_alpha2.ta

b$heterozygosity)),]

full <- lmer(sqrt(jost1_all) ~ sHeteroz + Beach + Age + + s

Heteroz*Beach + sHeteroz*Age + (1|PairID2),  data = het_alp

ha2.tab, REML=FALSE)

## test interaction first. If not significant remove from m

odel
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ageint <- lmer(sqrt(jost1_all) ~ sHeteroz + Beach + Age + s

Heteroz*Beach + (1|PairID2),  data = het_alpha2.tab, REML=F

ALSE)

beachint <- lmer(sqrt(jost1_all) ~ sHeteroz + Beach + Age +

 sHeteroz*Age + (1|PairID2),  data = het_alpha2.tab, REML=F

ALSE)

anova(full,beachint)

## Data: het_alpha2.tab

## Models:

## beachint: sqrt(jost1_all) ~ sHeteroz + Beach + Age + sHe

teroz * Age + (1 | 

## beachint:     PairID2)

## full: sqrt(jost1_all) ~ sHeteroz + Beach + Age + +sHeter

oz * Beach + 

## full:     sHeteroz * Age + (1 | PairID2)

##          Df    AIC    BIC  logLik deviance  Chisq Chi Df

 Pr(>Chisq)

## beachint  7 396.03 413.91 -191.01   382.03              

           

## full      8 395.41 415.84 -189.71   379.41 2.6177      1

     0.1057

anova(full,ageint)

## Data: het_alpha2.tab

## Models:

## ageint: sqrt(jost1_all) ~ sHeteroz + Beach + Age + sHete

roz * Beach + 

## ageint:     (1 | PairID2)

## full: sqrt(jost1_all) ~ sHeteroz + Beach + Age + +sHeter

oz * Beach + 

## full:     sHeteroz * Age + (1 | PairID2)

##        Df    AIC    BIC  logLik deviance  Chisq Chi Df P

r(>Chisq)

## ageint  7 393.42 411.30 -189.71   379.42                

         

## full    8 395.41 415.84 -189.71   379.41 0.0051      1  

   0.9432

## refit without interactions

model_full <- lmer(sqrt(jost1_all) ~ sHeteroz + Beach + Age

 + (1|PairID2), data = het_alpha.tab)

## Check the residual plots

plot(model_full)
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qqnorm(resid(model_full))

## Examine the model output

summary(model_full)
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## Linear mixed model fit by REML ['lmerMod']

## Formula: sqrt(jost1_all) ~ sHeteroz + Beach + Age + (1 |

 PairID2)

##    Data: het_alpha.tab

## 

## REML criterion at convergence: 380.2

## 

## Scaled residuals: 

##     Min      1Q  Median      3Q     Max 

## -2.0646 -0.7981 -0.1106  0.7185  2.3301 

## 

## Random effects:

##  Groups   Name        Variance Std.Dev.

##  PairID2  (Intercept) 0.3902   0.6247  

##  Residual             3.0426   1.7443  

## Number of obs: 95, groups:  PairID2, 53

## 

## Fixed effects:

##             Estimate Std. Error t value

## (Intercept)   8.3737     0.3363  24.901

## sHeteroz     -6.0578     2.4273  -2.496

## BeachSSB     -1.6819     0.3987  -4.218

## AgeP         -0.2863     0.3658  -0.783

## 

## Correlation of Fixed Effects:

##          (Intr) sHetrz BchSSB

## sHeteroz -0.094              

## BeachSSB -0.600  0.001       

## AgeP     -0.531  0.172 -0.010

## Calculates the marginal (only for fixed effects) and con

ditional (for all effects) R squared for the LMM

r.squaredGLMM(model_full)

##       R2m       R2c 

## 0.2153902 0.3045733

## New full model without interactions

full <- lmer(sqrt(jost1_all) ~ sHeteroz + Beach + Age + (1|

PairID2),  data = het_alpha2.tab, REML=FALSE)

#LRT

het <- lmer(sqrt(jost1_all) ~ Beach + Age + (1|PairID2),  d

ata = het_alpha2.tab, REML=FALSE)

beach <- lmer(sqrt(jost1_all) ~ sHeteroz + Age + (1|PairID2

),  data = het_alpha2.tab, REML=FALSE)

age <- lmer(sqrt(jost1_all) ~ sHeteroz + Beach + (1|PairID2

),  data = het_alpha2.tab, REML=FALSE)

anova(full,het)

## Data: het_alpha2.tab

## Models:

## het: sqrt(jost1_all) ~ Beach + Age + (1 | PairID2)

## full: sqrt(jost1_all) ~ sHeteroz + Beach + Age + (1 | Pa

irID2)

##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(
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>Chisq)  

## het   5 397.83 410.60 -193.91   387.83                  

         

## full  6 394.13 409.46 -191.07   382.13 5.6931      1    

0.01703 *

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

 ' ' 1

anova(full,beach)

## Data: het_alpha2.tab

## Models:

## beach: sqrt(jost1_all) ~ sHeteroz + Age + (1 | PairID2)

## full: sqrt(jost1_all) ~ sHeteroz + Beach + Age + (1 | Pa

irID2)

##       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr

(>Chisq)    

## beach  5 407.75 420.52 -198.88   397.75                 

            

## full   6 394.13 409.46 -191.07   382.13 15.621      1  7

.739e-05 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

 ' ' 1

anova(full,age)

## Data: het_alpha2.tab

## Models:

## age: sqrt(jost1_all) ~ sHeteroz + Beach + (1 | PairID2)

## full: sqrt(jost1_all) ~ sHeteroz + Beach + Age + (1 | Pa

irID2)

##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(

>Chisq)

## age   5 392.77 405.54 -191.38   382.77                  

       

## full  6 394.13 409.46 -191.07   382.13 0.6362      1    

 0.4251

We find that alpha diversity and heterozygosity are significantly correlated,

with decreased alpha diversity in more heterozygous individuals. The non-

significant interaction terms suggest that the effect does not differ between

the age classes and breeding colonies.

library(ggplot2)

## Draw the plot with separate points and ablines for each 

group (e.g. FWB mothers) 

model_full_int <- lmer(sqrt(jost1_all) ~ sHeteroz + Beach +

 Age + sHeteroz*Beach + sHeteroz*Age + (1|PairID2), data = 

het_alpha.tab)
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#summary(model_full_int)$coefficients

#                     Estimate Std. Error     t value

# (Intercept)        8.3743789  0.3350369 24.99539266

# sHeteroz          -9.8476947  3.8534081 -2.55558055

# BeachSSB          -1.6847756  0.3935801 -4.28064240

# AgeP              -0.2879318  0.3681890 -0.78202167

# sHeteroz:BeachSSB  7.7464112  4.9055802  1.57910193

# sHeteroz:AgeP     -0.3200377  4.9871232 -0.06417281

intercept_FWB_M <- summary(model_full_int)$coefficients[1,1

]

intercept_SSB_M <- (summary(model_full_int)$coefficients[1,

1])+(summary(model_full_int)$coefficients[3,1])

intercept_FWB_P <- (summary(model_full_int)$coefficients[1,

1])+(summary(model_full_int)$coefficients[4,1])

intercept_SSB_P <- (summary(model_full_int)$coefficients[1,

1])+(summary(model_full_int)$coefficients[3,1])+(summary(mo

del_full_int)$coefficients[4,1])

slope_FWB_M <- summary(model_full_int)$coefficients[2,1]

slope_SSB_M <- (summary(model_full_int)$coefficients[2,1])+

(summary(model_full_int)$coefficients[5,1])

slope_FWB_P <- (summary(model_full_int)$coefficients[2,1])+

(summary(model_full_int)$coefficients[6,1])

slope_SSB_P <- (summary(model_full_int)$coefficients[2,1])+

(summary(model_full_int)$coefficients[5,1])+(summary(model_

full_int)$coefficients[6,1])

ggplot() +

      geom_point(aes(x=het_alpha.tab$sHeteroz[het_alpha.tab

$BeachAge == "SSB P"], y=sqrt(het_alpha.tab$jost1_all[het_a

lpha.tab$BeachAge == "SSB P"])),colour = "firebrick2",shape

=0, size = 2.5) +

     geom_segment(aes(x = -0.25, xend = 0.18, y = (intercep

t_SSB_P+slope_SSB_P*-0.25), yend = (intercept_SSB_P+slope_S

SB_P*0.18)), size = 1 ,linetype="dotdash", colour="firebric

k2") +

      geom_point(aes(x=het_alpha.tab$sHeteroz[het_alpha.tab

$BeachAge == "Freshwater P"], y=sqrt(het_alpha.tab$jost1_al

l[het_alpha.tab$BeachAge == "Freshwater P"])),colour = "dod

gerblue3",shape=1, size = 2.5) +

       geom_segment(aes(x = -0.25, xend = 0.18, y = (interc

ept_FWB_P+slope_FWB_P*-0.25), yend = (intercept_FWB_P+slope

_FWB_P*0.18)), size = 1 ,linetype="dotdash", colour="dodger

blue3") +    

        geom_point(aes(x=het_alpha.tab$sHeteroz[het_alpha.t

ab$BeachAge == "SSB M"], y=sqrt(het_alpha.tab$jost1_all[het

_alpha.tab$BeachAge == "SSB M"])),colour = "firebrick2",sha

pe=15, size = 2.5) +

         geom_segment(aes(x = -0.25, xend = 0.18, y = (inte

rcept_SSB_M+slope_SSB_M*-0.25), yend = (intercept_SSB_M+slo

pe_SSB_M*0.18)), size = 1 , colour="firebrick2") +

         geom_point(aes(x=het_alpha.tab$sHeteroz[het_alpha.

tab$BeachAge == "Freshwater M"], y=sqrt(het_alpha.tab$jost1

_all[het_alpha.tab$BeachAge == "Freshwater M"])),colour = "

dodgerblue3", shape=19, size = 2.5) +

          geom_segment(aes(x = -0.25, xend = 0.18, y = (int

ercept_FWB_M+slope_FWB_M*-0.25), yend = (intercept_FWB_M+sl

ope_FWB_M*0.18)), size = 1 , colour="dodgerblue3") + 
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      theme_bw(base_size = 12)+    

      theme(panel.grid.major = element_blank(), panel.grid.

minor = element_blank())+

      theme(axis.text.x = element_text(size=12), axis.title

.x = element_text(size=14),axis.text.y = element_text(size=

12),axis.title.y = element_text(size=14),plot.margin = unit

(c(.5, .5, .5, .5), "cm"))+

       #scale_x_continuous(breaks=c(seq(from = -0.3, to = 0

.25, by = 0.1))) +

      xlab("Centred sMLH") +

      ylab("Effective no. of species (sqrt)") 

Figure 16. Relationship between bacterial alpha diversity (effective number of
species, square root transformed) and individual heterozygosity (sMLH, centered
around the mean). Plotted are the rawdata and regression lines from the LMM
(heterozygosity regressed against alpha diversity, while controlling for breeding
colony and age and including interaction terms beach x sMLH and age x sMLH).
FWB mothers - blue filled circles and solid line, FWB pups - blue empty circles and
dashed line, SSB mothers - red filled squares and solid line, SSB pups - red empty
squares and dashed line.

We wanted to know if our results could potentially be biased by using the

non-normalised OTU table for the calculation of alpha diversity values

(despite the strong correlation observed between alpha diversity estimates

from the non-normalised and single rarefied OTU table). To this end, we

rarefied the OTU table to 10,000 reads per sample 100 times (multiple

rarefaction) using the QIIME multiple_rarefactions_even_depth.py script and

calculated alpha diversity for each of the rarefied tables. We can now

calculate LMMs for each set of alpha diversity values to see how robust the

model estimates are to rarefaction.

library(lme4)

library(MuMIn)

library(ggplot2)
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## Set the alpha diversity values for P24 and P39 to "NA" t

o make the analysis comparable to the muliple rarefied data

 set, where these two samples are missing. 

het_alpha3.tab <- het_alpha.tab

het_alpha3.tab[c(which(het_alpha3.tab$SampleID=="P39"), whi

ch(het_alpha.tab$SampleID=="P24")),]$jost1_all <- NA

## Run the full model as above

model_full_int_jost1_all <- lmer(sqrt(jost1_all) ~ sHeteroz

 + Beach + Age + sHeteroz*Beach + sHeteroz*Age + (1|PairID2

), data = het_alpha3.tab)

intercept_FWB_M_j1a <- summary(model_full_int_jost1_all)$co

efficients[1,1]

intercept_SSB_M_j1a <- (summary(model_full_int_jost1_all)$c

oefficients[1,1])+(summary(model_full_int_jost1_all)$coeffi

cients[3,1])

intercept_FWB_P_j1a <- (summary(model_full_int_jost1_all)$c

oefficients[1,1])+(summary(model_full_int_jost1_all)$coeffi

cients[4,1])

intercept_SSB_P_j1a <- (summary(model_full_int_jost1_all)$c

oefficients[1,1])+(summary(model_full_int_jost1_all)$coeffi

cients[3,1])+(summary(model_full_int_jost1_all)$coefficient

s[4,1])

slope_FWB_M_j1a <- summary(model_full_int_jost1_all)$coeffi

cients[2,1]

slope_SSB_M_j1a <- (summary(model_full_int_jost1_all)$coeff

icients[2,1])+(summary(model_full_int_jost1_all)$coefficien

ts[5,1])

slope_FWB_P_j1a <- (summary(model_full_int_jost1_all)$coeff

icients[2,1])+(summary(model_full_int_jost1_all)$coefficien

ts[6,1])

slope_SSB_P_j1a <- (summary(model_full_int_jost1_all)$coeff

icients[2,1])+(summary(model_full_int_jost1_all)$coefficien

ts[5,1])+(summary(model_full_int_jost1_all)$coefficients[6,

1])

## Import the table with 100 alpha diversity estimates per 

sample

multi_alpha <- read.table("./AFSmicrobiome_SI_alphaDiversit

yMultiRaref_Rinput_DatasetS16.txt", header=T, sep= "\t", ro

w.names=1, na.strings=c("","NA"))

## Join the heterozygosity table (without the non-normalise

d alpha diversity estimates) and the multi estimate table

multi_alpha2 <- cbind(multi_alpha, SampleID = row.names(mul

ti_alpha))

multi_alpha2.tab <- dplyr::left_join(het_alpha.tab[,-5], mu

lti_alpha2, by = "SampleID")

## We want to plot the model results for each alpha diversi

ty estimate to get an idea about the level of uncertainty i

ntroduced through rarefying the OTU table (i.e. the robustn

ess of the observed correlation between alpha diversity and

 heterozygosity).

## First, an empty data frame is created that will be fille

d with the model outputs. 

model_outs <- data.frame(matrix(nrow = 8, ncol = 100))

rownames(model_outs) <- c("intercept_FWB_M", "intercept_SSB

_M", "intercept_FWB_P", "intercept_SSB_P", "slope_FWB_M", "

slope_SSB_M", "slope_FWB_P", "slope_SSB_P")
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colnames(model_outs) <- as.character(c(0:99))

## For all the alpha diversity estimates run the model and 

fill the data frame with the model estimates.

for(i in 0:99){

  jost <- paste0("jost_",i)

  model1 <- paste0("lmer(sqrt(",jost,") ~ sHeteroz + Beach 

+ Age + sHeteroz*Beach + sHeteroz*Age + (1|PairID2), data =

 multi_alpha2.tab)")

  model_full_int <- eval(parse(text=model1))

  model_outs[which(rownames(model_outs)=="intercept_FWB_M")

, which(colnames(model_outs)==i)] <- summary(model_full_int

)$coefficients[1,1]

  model_outs[which(rownames(model_outs)=="intercept_SSB_M")

, which(colnames(model_outs)==i)] <- (summary(model_full_in

t)$coefficients[1,1])+(summary(model_full_int)$coefficients

[3,1])

  model_outs[which(rownames(model_outs)=="intercept_FWB_P")

, which(colnames(model_outs)==i)] <- (summary(model_full_in

t)$coefficients[1,1])+(summary(model_full_int)$coefficients

[4,1])

  model_outs[which(rownames(model_outs)=="intercept_SSB_P")

, which(colnames(model_outs)==i)] <- (summary(model_full_in

t)$coefficients[1,1])+(summary(model_full_int)$coefficients

[3,1])+(summary(model_full_int)$coefficients[4,1])

  model_outs[which(rownames(model_outs)=="slope_FWB_M"), wh

ich(colnames(model_outs)==i)] <- summary(model_full_int)$co

efficients[2,1]

  model_outs[which(rownames(model_outs)=="slope_SSB_M"), wh

ich(colnames(model_outs)==i)] <- (summary(model_full_int)$c

oefficients[2,1])+(summary(model_full_int)$coefficients[5,1

])

  model_outs[which(rownames(model_outs)=="slope_FWB_P"), wh

ich(colnames(model_outs)==i)] <- (summary(model_full_int)$c

oefficients[2,1])+(summary(model_full_int)$coefficients[6,1

])

  model_outs[which(rownames(model_outs)=="slope_SSB_P"), wh

ich(colnames(model_outs)==i)] <- (summary(model_full_int)$c

oefficients[2,1])+(summary(model_full_int)$coefficients[5,1

])+(summary(model_full_int)$coefficients[6,1])

}

## First plot the results from the model with non-normalise

d alpha diversity estimates

hetplot <- ggplot() +

  geom_point(aes(x=het_alpha3.tab$sHeteroz[het_alpha3.tab$B

eachAge == "SSB P"], y=sqrt(het_alpha3.tab$jost1_all[het_al

pha3.tab$BeachAge == "SSB P"])),colour = "firebrick2",shape

=0, size = 2.5) +

  geom_segment(aes(x = -0.25, xend = 0.18, y = (intercept_S

SB_P_j1a+slope_SSB_P_j1a*-0.25), yend = (intercept_SSB_P_j1

a+slope_SSB_P_j1a*0.18)), size = 1 ,linetype="dotdash", col

our="firebrick2") +

  geom_point(aes(x=het_alpha3.tab$sHeteroz[het_alpha3.tab$B

eachAge == "Freshwater P"], y=sqrt(het_alpha3.tab$jost1_all

[het_alpha3.tab$BeachAge == "Freshwater P"])),colour = "dod

gerblue3",shape=1, size = 2.5) +

  geom_segment(aes(x = -0.25, xend = 0.18, y = (intercept_F

WB_P_j1a+slope_FWB_P_j1a*-0.25), yend = (intercept_FWB_P_j1
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a+slope_FWB_P_j1a*0.18)), size = 1 ,linetype="dotdash", col

our="dodgerblue3") +    

  geom_point(aes(x=het_alpha3.tab$sHeteroz[het_alpha3.tab$B

eachAge == "SSB M"], y=sqrt(het_alpha3.tab$jost1_all[het_al

pha3.tab$BeachAge == "SSB M"])),colour = "firebrick2",shape

=15, size = 2.5) +

  geom_segment(aes(x = -0.25, xend = 0.18, y = (intercept_S

SB_M_j1a+slope_SSB_M_j1a*-0.25), yend = (intercept_SSB_M_j1

a+slope_SSB_M_j1a*0.18)), size = 1 , colour="firebrick2") +

  geom_point(aes(x=het_alpha3.tab$sHeteroz[het_alpha3.tab$B

eachAge == "Freshwater M"], y=sqrt(het_alpha3.tab$jost1_all

[het_alpha3.tab$BeachAge == "Freshwater M"])),colour = "dod

gerblue3", shape=19, size = 2.5) +

  geom_segment(aes(x = -0.25, xend = 0.18, y = (intercept_F

WB_M_j1a+slope_FWB_M_j1a*-0.25), yend = (intercept_FWB_M_j1

a+slope_FWB_M_j1a*0.18)), size = 1 , colour="dodgerblue3") 

+ 

  theme_bw(base_size = 12)+    

  theme(panel.grid.major = element_blank(), panel.grid.mino

r = element_blank())+

  theme(axis.text.x = element_text(size=12), axis.title.x =

 element_text(size=14),axis.text.y = element_text(size=12),

axis.title.y = element_text(size=14),plot.margin = unit(c(.

5, .5, .5, .5), "cm"))+

  #scale_x_continuous(breaks=c(seq(from = -0.3, to = 0.25, 

by = 0.1))) +

  xlab("Centred sMLH") +

  ylab("Effective no. of species (sqrt)") 

## Add the results for the 100 alpha diversity estimates ca

lculated for the multiple rarefactions using thin grey line

s

for(i in 1:100){

hetplot <- hetplot +  

  geom_segment(aes(x = -0.25, xend = 0.18, y = (model_outs[

"intercept_SSB_P",i]+model_outs["slope_SSB_P",i]*-0.25), ye

nd = (model_outs["intercept_SSB_P",i]+model_outs["slope_SSB

_P",i]*0.18)), size = 0.6, linetype="dotdash", colour="ligh

tgrey") +

  geom_segment(aes(x = -0.25, xend = 0.18, y = (model_outs[

"intercept_FWB_P",i]+model_outs["slope_FWB_P",i]*-0.25), ye

nd = (model_outs["intercept_FWB_P",i]+model_outs["slope_FWB

_P",i]*0.18)), size = 0.6, linetype="dotdash", colour="ligh

tgrey") +    

  geom_segment(aes(x = -0.25, xend = 0.18, y = (model_outs[

"intercept_SSB_M",i]+model_outs["slope_SSB_M",i]*-0.25), ye

nd = (model_outs["intercept_SSB_M",i]+model_outs["slope_SSB

_M",i]*0.18)), size = 0.6, colour="lightgrey") +

  geom_segment(aes(x = -0.25, xend = 0.18, y = (model_outs[

"intercept_FWB_M",i]+model_outs["slope_FWB_M",i]*-0.25), ye

nd = (model_outs["intercept_FWB_M",i]+model_outs["slope_FWB

_M",i]*0.18)), size = 0.6, colour="lightgrey")

}

## Show plot

hetplot
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Figure 17. Relationship between bacterial alpha diversity (effective number of
species, square root transformed) and individual heterozygosity (sMLH, centered
around the mean). Plotted are the rawdata and regression lines from the LMM
(heterozygosity regressed against alpha diversity, while controlling for breeding
colony and age and including interaction terms beach x sMLH and age x sMLH).
Light grey lines represent regression lines from 100 LMMs for which alpha diversity
was calculated for 100 rarefied OTU tables. FWB mothers - blue filled circles and
solid line, FWB pups - blue empty circles and dashed line, SSB mothers - red filled
squares and solid line, SSB pups - red empty squares and dashed line.

We can see that the estimates derived from the 100 additional models are

very similar to the original results, thus rarefying the OTU table has very little

influence on the correlation between alpha diversity and heterozygosity.

Excluding the two individuals with less than 10,000 reads (P24, P39) has a

stronger effect on the estimates but does not change the overall results.

Identity disequilibrium g2
We computed the two-locus heterozygosity disequilibrium g2, which

assesses the covariance of heterozygosity between markers and tells us

something about the correlations between heterozygosity and inbreeding. We

calculated g2 using the inbreedR package.

library(inbreedR)

library(grid)

## Calculate g2 from the genotype data

g2 <- inbreedR::g2_microsats(genos, nperm = 10000, nboot = 

10000, CI = 0.95, verbose=FALSE)

g2

## 

## Data: 95 observations at 50 markers

## Function call = inbreedR::g2_microsats(genotypes = genos
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, nperm = 10000, nboot = 10000,     CI = 0.95, verbose = FA

LSE)

## 

## g2 = 0.001142894, se = 0.001263793

## 

## confidence interval 

##         2.5%        97.5% 

## -0.001145066  0.003806479 

## 

## p (g2 > 0) = 0.1195 (based on 10000 permutations)

## Estimate g2 from increasing number of randomly subsample

d loci

## Define the function

resample_loc_g2 <- function(genos, niter) {

  nloc <- ncol(genos)

  all_g2 <- matrix(data = NA, nrow = niter, ncol = nloc-1)

  

  for (i in 2:nloc) {

    for (k in 1:niter) {

      ind <- sample(1:50, i)

      gene_sub <- genos[ind]

      all_g2[k, i-1] <- g2_microsats(gene_sub)$g2

    }

  }

  all_g2

}

## Perform the resampling

resampling_g2 <- resample_loc_g2(genos, niter = 1000)

## Define a function to summerise the results

sum_results <- function(resampling_output) {

  mean_cor <- apply(resampling_output,2,mean, na.rm=T)

  sd_cor <- apply(resampling_output,2,sd, na.rm=T)

  se_cor <- sd_cor/(sqrt(nrow(resampling_output)))

  sum_results <- data.frame(locnum = 1:ncol(resampling_outp

ut), 

                            cormean = mean_cor, corsd = sd_

cor, corse = se_cor)

}

## Perform the summerising of results

results_g2 <- sum_results(resampling_g2) 

## Plot the results

ggplot2::ggplot(results_g2, aes(x = locnum, y = cormean)) +

        geom_line(size = 0.6, colour = "black") +

        geom_errorbar(aes(ymin = cormean-corsd, ymax = corm

ean+corsd),

                      width=0.8, alpha=0.7, size = 0.8, col

our = "black") +

        geom_point(size = 2, shape = 16) +

        theme_bw()+

        theme(panel.grid.major = element_blank(), panel.gri

d.minor = element_blank())+

        geom_hline(yintercept = 0,linetype = 2, colour="gra

y44")+

        theme(axis.title.x = element_text(vjust= -2 ,size =

 14), axis.title.y = element_text(vjust=3,size = 14), axis.

text.x = element_text(size = 12), axis.text.y = element_tex

t(size = 12)) +
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        ylab("g2") +

        xlab("Number of loci") +

        labs(title = "g2 estimated from an increasing numbe

r of loci")

Figure 18. Estimation of the two-loci identity disequilibrium g2 from an increasing
random subset of loci.

Locus specific effects (local effects)
We also tested for possible local effects following Szulkin et al. (2010). Using

an F-ratio test we compare a model of alpha diversity containing multi locus

heterozygosity (MLH – the sum of all single locus heterozygosities over all

loci) with a model in which MLH was replaced by separate terms for the

heterozygosity of each of the 50 microsatellite loci. Local effects can be

identified if the second model explains significantly more variance than the

first model. For missing genotypes we replaced specific heterozygosity

values with the sample average.

## Calculate Heterozygozity and correlate with a-diversity

 

 library(inbreedR)

 library(dplyr)

 

## The header line needs to be present for this analysis (i

t was removed for the relatedness calculations).

 msats <- read.table("./AFSmicrobiome_SI_MicrosatelliteGeno

types50_P22removed_colnames_Rinput_DatasetS5.1.txt",header=

TRUE,row.names = 1, sep= "\t", na.strings=c("","NA"))

 is.na(msats) <- !msats
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 ## Convert to inbreedR format

 genos <- inbreedR::convert_raw(msats) 

 

 ## To restore column names for genos data frame use column

 names from msats data frame

 mnames <- colnames(msats)

 ## remove every second entry (in genos every marker has on

ly one column)

 mnames <- mnames[seq(1,length(mnames),2)]

 colnames(genos) <- mnames

 

 ## replace the missing values for each marker with the ave

rage for this marker (column average)

NA2mean <- function(x) replace(x, is.na(x), mean(x, na.rm =

 TRUE))

genosNoNA <- replace(genos, TRUE, lapply(genos, NA2mean))

## Calculate MLH as H = the sum of hi over L loci, hi = het

erozygosity at a single locus i (hi, coded as 0 or 1)

## and add to data frame

genosNoNA <- cbind(genosNoNA, MLH = rowSums(genosNoNA))

genosNoNA <- cbind(genosNoNA, Sample = rownames(genosNoNA))

## data frame containing alpha diversity estimates 

alpha <- read.table("./AFSmicrobiome_SI_alphaDiversity_Rinp

ut_DatasetS12.txt", header = TRUE, sep = "\t")

## Only keep columns with sample names and jost1 estimates 

for all individuals

alpha <- subset(alpha, select=c("Sample","jost1_all"))

## combine both data frames

genosNoNA2 <- left_join(genosNoNA,alpha)

row.names(genosNoNA2) <- genosNoNA2$Sample

## Model 1: Regress alpha diversity on MLH using a simple r

egression

m1 <- lm(jost1_all ~ MLH, data = genosNoNA2)

summary(m1)

## 

## Call:

## lm(formula = jost1_all ~ MLH, data = genosNoNA2)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -48.696 -21.902  -6.108  19.626  78.700 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept)  161.194     41.438    3.89 0.000188 ***

## MLH           -2.827      1.140   -2.48 0.014942 *  

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

 ' ' 1

## 

## Residual standard error: 31.18 on 93 degrees of freedom

## Multiple R-squared:  0.06203,    Adjusted R-squared:  0.

05194 

## F-statistic:  6.15 on 1 and 93 DF,  p-value: 0.01494

## Model 2: Regress alpha diversity on all single-locus het

erozygosities hi . . . hL, expressed as one or zero (L bein
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g the number of loci), using a multiple regression

m2 <- lm(jost1_all ~ Pv9 + Hg6.3 + Hg8.10 + Hg1.3 + M11a + 

PvcA + Zcwb07 + Agaz2 + Ag3 + Agaz6 + OrrFCB7 + Ag2 + OrrFC

B2 + Lw10 + Zcwc01 + Agaz5 + ZcwCgDhB.14 + SSL301 + Ag7 + A

gt10 + ZcwCgDh4.7 + Zcwe05 + Ag1 + OrrFCB8 + Agt47 + Zcwf07

 + ZcwD02 + ZcwCgDh1.8 + Aa4 + ZcCgDh5.8 + Agaz3 + X962.1 +

 X554.6 + Zcwa12 + PvcE + Zcwb09 + agaz10 + Mang44 + Mang36

 + Zcwe03 + Zcwe04 + X101.26 + X928.4b + X507.11 + Zcwa05 +

 Zcwe12 + ZcwCgDh3.6 + Hg6.1 + Zcwc11 + Lc28, data = genosN

oNA2) 

summary(m2)

## 

## Call:

## lm(formula = jost1_all ~ Pv9 + Hg6.3 + Hg8.10 + Hg1.3 + 

M11a + 

##     PvcA + Zcwb07 + Agaz2 + Ag3 + Agaz6 + OrrFCB7 + Ag2 

+ OrrFCB2 + 

##     Lw10 + Zcwc01 + Agaz5 + ZcwCgDhB.14 + SSL301 + Ag7 +

 Agt10 + 

##     ZcwCgDh4.7 + Zcwe05 + Ag1 + OrrFCB8 + Agt47 + Zcwf07

 + ZcwD02 + 

##     ZcwCgDh1.8 + Aa4 + ZcCgDh5.8 + Agaz3 + X962.1 + X554

.6 + 

##     Zcwa12 + PvcE + Zcwb09 + agaz10 + Mang44 + Mang36 + 

Zcwe03 + 

##     Zcwe04 + X101.26 + X928.4b + X507.11 + Zcwa05 + Zcwe

12 + 

##     ZcwCgDh3.6 + Hg6.1 + Zcwc11 + Lc28, data = genosNoNA

2)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -50.503 -13.478  -0.988  14.669  72.130 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)   

## (Intercept) 222.4175    65.1841   3.412  0.00139 **

## Pv9          -1.7427    11.1360  -0.156  0.87636   

## Hg6.3        -6.8814    13.3745  -0.515  0.60947   

## Hg8.10       -5.8589     9.0555  -0.647  0.52099   

## Hg1.3       -26.0757    11.0725  -2.355  0.02305 * 

## M11a         -1.6963    17.1643  -0.099  0.92172   

## PvcA         -7.4104    12.2281  -0.606  0.54762   

## Zcwb07       13.5809    13.7076   0.991  0.32722   

## Agaz2       -15.8241    12.1362  -1.304  0.19906   

## Ag3           8.9310     9.5723   0.933  0.35591   

## Agaz6        -0.2008     9.9289  -0.020  0.98395   

## OrrFCB7      -9.0776    13.0387  -0.696  0.48996   

## Ag2           0.7049    11.9082   0.059  0.95307   

## OrrFCB2      -4.7734    16.5496  -0.288  0.77437   

## Lw10         -4.3254    15.3805  -0.281  0.77986   

## Zcwc01       10.0046    14.3341   0.698  0.48887   

## Agaz5        -7.3567     9.4066  -0.782  0.43836   

## ZcwCgDhB.14   2.5961    12.1315   0.214  0.83154   

## SSL301       -9.5548    15.2998  -0.625  0.53552   

## Ag7           6.5474    11.0949   0.590  0.55812   

## Agt10        -8.9138     9.9231  -0.898  0.37392   

## ZcwCgDh4.7  -15.6473    12.8643  -1.216  0.23034   
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## Zcwe05       -9.4434    10.6076  -0.890  0.37817   

## Ag1           4.0519    13.5991   0.298  0.76714   

## OrrFCB8      -0.5235    10.0479  -0.052  0.95868   

## Agt47       -14.9806    10.0315  -1.493  0.14248   

## Zcwf07        1.9909    11.8394   0.168  0.86723   

## ZcwD02       -5.9169    17.8801  -0.331  0.74228   

## ZcwCgDh1.8    7.9141     9.8672   0.802  0.42683   

## Aa4          -5.1714    10.4371  -0.495  0.62273   

## ZcCgDh5.8   -30.7573    15.7172  -1.957  0.05672 . 

## Agaz3        10.0092     8.7977   1.138  0.26140   

## X962.1      -13.4975     9.3173  -1.449  0.15453   

## X554.6        8.1116    12.7721   0.635  0.52865   

## Zcwa12      -21.3043    13.9776  -1.524  0.13462   

## PvcE         -2.0696    14.3056  -0.145  0.88563   

## Zcwb09       -4.4766    12.3290  -0.363  0.71827   

## agaz10       10.7827    10.7365   1.004  0.32073   

## Mang44       -4.1525    10.3323  -0.402  0.68971   

## Mang36      -17.6256    20.9464  -0.841  0.40464   

## Zcwe03       -6.4964    12.0617  -0.539  0.59288   

## Zcwe04       12.5628    12.6753   0.991  0.32705   

## X101.26       2.1655    11.7022   0.185  0.85404   

## X928.4b     -18.5645    12.6550  -1.467  0.14950   

## X507.11       6.2648     9.5117   0.659  0.51356   

## Zcwa05      -16.5090    15.1272  -1.091  0.28106   

## Zcwe12        9.4646    12.9694   0.730  0.46940   

## ZcwCgDh3.6  -20.4411    13.3432  -1.532  0.13269   

## Hg6.1        -6.3384    14.0861  -0.450  0.65494   

## Zcwc11       -8.5377    14.0219  -0.609  0.54574   

## Lc28         -9.1522    13.7173  -0.667  0.50813   

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

 ' ' 1

## 

## Residual standard error: 31.55 on 44 degrees of freedom

## Multiple R-squared:  0.5457, Adjusted R-squared:  0.0294

3 

## F-statistic: 1.057 on 50 and 44 DF,  p-value: 0.4277

## Test whether the two models differ significantly from ea

ch other using an F-ratio test.

anova(m1,m2)

## Analysis of Variance Table

## 

## Model 1: jost1_all ~ MLH

## Model 2: jost1_all ~ Pv9 + Hg6.3 + Hg8.10 + Hg1.3 + M11a

 + PvcA + Zcwb07 + 

##     Agaz2 + Ag3 + Agaz6 + OrrFCB7 + Ag2 + OrrFCB2 + Lw10

 + Zcwc01 + 

##     Agaz5 + ZcwCgDhB.14 + SSL301 + Ag7 + Agt10 + ZcwCgDh

4.7 + 

##     Zcwe05 + Ag1 + OrrFCB8 + Agt47 + Zcwf07 + ZcwD02 + Z

cwCgDh1.8 + 

##     Aa4 + ZcCgDh5.8 + Agaz3 + X962.1 + X554.6 + Zcwa12 +

 PvcE + 

##     Zcwb09 + agaz10 + Mang44 + Mang36 + Zcwe03 + Zcwe04 

+ X101.26 + 

##     X928.4b + X507.11 + Zcwa05 + Zcwe12 + ZcwCgDh3.6 + H

g6.1 + 
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##     Zcwc11 + Lc28

##   Res.Df   RSS Df Sum of Sq     F Pr(>F)

## 1     93 90418                          

## 2     44 43794 49     46624 0.956 0.5627

# Res.Df   RSS Df Sum of Sq     F Pr(>F)

# 1     93 90418                          

# 2     44 43794 49     46624 0.956 0.5627

The second model does not explain more variance than the first model, thus

we find no evidence for local effects. 

PICRUst functional analysis
Lastly, we want to take a look at the potential functional capacity of the

Antarctic fur seal skin microbial communities. We run PICRUSt analysis to

obtain functional annotations for our 16S amplicon data. To evaluate the

prediction accuracy of the PICRUSt results, first the nearest sequenced taxon

index (NSTI) is calculated. The NSTI is defined as the sum of phylogenetic

distances for each organism in the OTU table to its nearest relative with a

sequenced reference genome (measured in substitutions per site and

weighted by its frequency in the OTU table). NSTI values between 0.06-0.10

indicate that the PICRUSt predictions reasonably reflect the true functional

profiles of the microbial community.

library(dplyr)

## Calculate average NSTI values overall and for each breed

ing colony to assess reliability of PICRUSt results

## Import NSTI table (output from PICRUSt)

nsti.tab <- read.table("./AFSmicrobiome_SI_NSTIvalues_filte

redTrimmed_rarefied_Rinput_DatasetS17.txt",header=TRUE, sep

= "\t", na.strings=c("","NA"))

colnames(nsti.tab)[which(colnames(nsti.tab) == 'Sample')] <

- 'SampleNames'

## Create a data frame with beach information for each samp

le which will be merged with the nsti table

beach.tab <- subset(meta_data.tab, select=c("Beach", "Age",

 "SampleNames"))

## Merge data frames

nsti.tab <- dplyr::left_join(nsti.tab, beach.tab, by = "Sam

pleNames")

## Caluclate overall NSTI

paste("Overall NSTI:",  round(mean(nsti.tab$Value),digits=3

),"+-",round(sd(nsti.tab$Value),digits=3),"sd")

## [1] "Overall NSTI: 0.075 +- 0.022 sd"

paste("Freshwater beach NSTI:",round(mean(nsti.tab[nsti.tab

$Beach=="Freshwater",]$Value),digits=3),"+-",round(sd(nsti.

tab[nsti.tab$Beach=="Freshwater",]$Value),digits=3),"sd")

## [1] "Freshwater beach NSTI: 0.083 +- 0.02 sd"
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paste("Special study beach NSTI:", round(mean(nsti.tab[nsti

.tab$Beach=="SSB",]$Value),digits=3),"+-",round(sd(nsti.tab

[nsti.tab$Beach=="SSB",]$Value),digits=3),"sd")

## [1] "Special study beach NSTI: 0.068 +- 0.02 sd"

paste("Mother NSTI:", round(mean(nsti.tab[nsti.tab$Age=="M"

,]$Value),digits=3),"+-",round(sd(nsti.tab[nsti.tab$Age=="M

",]$Value),digits=3),"sd")

## [1] "Mother NSTI: 0.079 +- 0.02 sd"

paste("Pup NSTI:", round(mean(nsti.tab[nsti.tab$Age=="P",]$

Value),digits=3),"+-",round(sd(nsti.tab[nsti.tab$Age=="P",]

$Value),digits=3),"sd")

## [1] "Pup NSTI: 0.072 +- 0.022 sd"

After establishing that the functional predictions should be reliable for the

Antarctic fur seal microbiome we can perform principal component analysis

with the data similar to the analysis that can be done with the STAMP

software.

library(dplyr)

## Import the table with functional predictions. The table 

looks similar to the OTU table but instead for OTUs read co

unts are given for the different functional categories. Bef

ore importing the orginal output table (converted to .txt f

rom .biom) some manual adjustments were done. The first lin

e of the file as well as the "#" at the beginning of the se

cond line were deleted. Any "'" symbols from the category n

ames were removed. In the header line the last column name 

"KEGG_Pathways" was replace by three column names (Level1,L

evel2,Level3). All ";" were replaced by "\t".

pi.tab <- read.table("./AFSmicrobiome_SI_Categorize_by_Func

tionL3_FilteredTrimmed_rarefied_Rinput_DatasetS18.txt", sep

 = "\t",row.names =1, header = TRUE)

## The table rownames correspond to KEGG categories at leve

l 3 (level 1-3 category names can be found in the last thre

e columns of the data frame).

## Remove rows with all 0 entries (Note: the last 3 columns

 contain the category names at levels 1-3)

pi.tab <- pi.tab[-which(rowSums(pi.tab[,1:96])==0),]

## Transpose the table so that the sample names become the 

row names 

piT.tab <- t(pi.tab[,1:96])

## Log-transform and add pseudocount as above for the beta 

diversity analysis

pi_log.tab <- log(piT.tab+0.0001)

## Substract the log of the pseudocount

pi_log.tab <- pi_log.tab-(log(0.0001))
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## Perform principal componant analysis (PCA). Centre and s

cale the data to zero mean and unit variance.

pi_pca <- prcomp(pi_log.tab, center = TRUE, scale. = TRUE)

## Look at the variance proportions of each PC

# summary(pi_pca)

## Extract the first 3 PCS and make a new data frame

pcsL3.tab <- as.data.frame(pi_pca$x[,1:3])

## Add a column with sample names to the data frame

pcsL3.tab["SampleID"] <- rownames(pcsL3.tab)

## Combine the data frame with the heterozygosity table fro

m above

pcs_metaL3.tab <- left_join(pcsL3.tab,het_alpha.tab, by="Sa

mpleID")

rownames(pcs_metaL3.tab) <- pcs_metaL3.tab$SampleID

## Repeat the PCA for level2 functional categories.

## Sum up all read counts at level 2 for each sample

pi_L2.tab<- aggregate(pi.tab[,1:96], by=list(Level2=pi.tab$

Level2), FUN=sum)

## Add rownames

row.names(pi_L2.tab) <- pi_L2.tab$Level2

## Remove the Level2 column (now rownames)

pi_L2.tab <- pi_L2.tab[,-(which(colnames(pi_L2.tab) == 'Lev

el2'))]

## All steps as before for level 3

pi_L2T.tab <- t(pi_L2.tab)

pi_L2T_log.tab <- log(pi_L2T.tab+0.0001)

pi_L2T_log.tab <- pi_L2T_log.tab-(log(0.0001))

piL2_pca <- prcomp(pi_L2T_log.tab, center = TRUE, scale. = 

TRUE)

# summary(piL2_pca)

pcsL2.tab <- as.data.frame(piL2_pca$x[,1:3])

pcsL2.tab["SampleID"] <- rownames(pcsL2.tab)

pcs_metaL2.tab <- left_join(pcsL2.tab,het_alpha.tab, by="Sa

mpleID")

rownames(pcs_metaL2.tab) <- pcs_metaL2.tab$SampleID

## Repeat the PCA for level2 functional categories.

## Sum up all read counts at level 2 for each sample

pi_L1.tab<- aggregate(pi.tab[,1:96], by=list(Level1=pi.tab$

Level1), FUN=sum)

row.names(pi_L1.tab) <- pi_L1.tab$Level1

pi_L1.tab <- pi_L1.tab[,-(which(colnames(pi_L1.tab) == 'Lev

el1'))]

pi_L1T.tab <- t(pi_L1.tab)

pi_L1T_log.tab <- log(pi_L1T.tab+0.0001)

pi_L1T_log.tab <- pi_L1T_log.tab-(log(0.0001))

piL1_pca <- prcomp(pi_L1T_log.tab, center = TRUE, scale. = 

TRUE)

# summary(piL1_pca)

pcsL1.tab <- as.data.frame(piL1_pca$x[,1:3])

pcsL1.tab["SampleID"] <- rownames(pcsL1.tab)

pcs_metaL1.tab <- left_join(pcsL1.tab,het_alpha.tab, by="Sa

mpleID")

rownames(pcs_metaL1.tab) <- pcs_metaL1.tab$SampleID

library(ggplot2)

library(gridExtra)
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## Plot the PCA results for level 3

L3_PC12 <- ggplot(pcs_metaL3.tab, aes(x=PC1, y=PC2))+

                geom_point(size=3.5, stroke=1, aes(colour=B

eachAge, shape=BeachAge))+

                scale_color_manual(values = c("dodgerblue3"

,"dodgerblue3","firebrick2","firebrick2"),name="",breaks=c(

"Freshwater M", "Freshwater P", "SSB M", "SSB P"), labels=c

("FWB mothers","FWB pups", "SSB mothers", "SSB pups"))+

                scale_shape_manual(values = c(19,1,15,0), n

ame="", breaks=c("Freshwater M", "Freshwater P", "SSB M", "

SSB P"), labels=c("FWB mothers","FWB pups", "SSB mothers", 

"SSB pups"))+

                theme_bw()+

                theme(legend.position=c(0.16,0.16),legend.t

itle = element_blank(),legend.background = element_rect(siz

e=0.3,linetype="solid", colour ="black"))+

                theme(panel.grid.major = element_blank(), p

anel.grid.minor = element_blank())+

                labs(x = "PC1 (61.3% explained variability)

", y = "PC2 (13.7% explained variability)")+

                theme(axis.title.y=element_text(size=12), a

xis.title.x  = element_text(size=12), axis.text.x=element_t

ext(size=10), axis.text.y  = element_text(size=10))

L3_PC13<-ggplot(pcs_metaL3.tab, aes(x=PC1, y=PC3))+

                geom_point(size=3.5, stroke=1, aes(colour=B

eachAge, shape=BeachAge))+

                scale_color_manual(values = c("dodgerblue3"

,"dodgerblue3","firebrick2","firebrick2"),name="",breaks=c(

"Freshwater M", "Freshwater P", "SSB M", "SSB P"), labels=c

("FWB mothers","FWB pups", "SSB mothers", "SSB pups"))+

                scale_shape_manual(values = c(19,1,15,0), n

ame="", breaks=c("Freshwater M", "Freshwater P", "SSB M", "

SSB P"), labels=c("FWB mothers","FWB pups", "SSB mothers", 

"SSB pups"))+

                theme_bw()+

                theme(legend.position="none")+

                theme(panel.grid.major = element_blank(), p

anel.grid.minor = element_blank())+

                labs(x = "PC1 (61.3% explained variability)

", y = "PC3 (5.6% explained variability)")+

                theme(axis.title.y=element_text(size=12), a

xis.title.x  = element_text(size=12), axis.text.x=element_t

ext(size=10), axis.text.y  = element_text(size=10))

grid.arrange(L3_PC12, L3_PC13, ncol=2)
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Figure 19. Principal component analysis of PICRUSt functional predictions at
hierachical level 3.

library(ggplot2)

library(gridExtra)

## Plot the PCA results for level 2

L2_PC12<-ggplot(pcs_metaL2.tab, aes(x=PC1, y=PC2))+

                geom_point(size=3.5, stroke=1, aes(colour=B

eachAge, shape=BeachAge))+

                scale_color_manual(values = c("dodgerblue3"

,"dodgerblue3","firebrick2","firebrick2"),name="",breaks=c(

"Freshwater M", "Freshwater P", "SSB M", "SSB P"), labels=c

("FWB mothers","FWB pups", "SSB mothers", "SSB pups"))+

                scale_shape_manual(values = c(19,1,15,0), n

ame="", breaks=c("Freshwater M", "Freshwater P", "SSB M", "

SSB P"), labels=c("FWB mothers","FWB pups", "SSB mothers", 

"SSB pups"))+

                theme_bw()+

                theme(legend.position="none")+

                theme(panel.grid.major = element_blank(), p

anel.grid.minor = element_blank())+

                labs(x = "PC1 (78.0% explained variability)

", y = "PC2 (12.0% explained variability)")+

                theme(axis.title.y=element_text(size=12), a

xis.title.x  = element_text(size=12), axis.text.x=element_t

ext(size=10), axis.text.y  = element_text(size=10))

L2_PC13<-ggplot(pcs_metaL2.tab, aes(x=PC1, y=PC3))+

                geom_point(size=3.5, stroke=1, aes(colour=B

eachAge, shape=BeachAge))+

                scale_color_manual(values = c("dodgerblue3"

,"dodgerblue3","firebrick2","firebrick2"),name="",breaks=c(

"Freshwater M", "Freshwater P", "SSB M", "SSB P"), labels=c

("FWB mothers","FWB pups", "SSB mothers", "SSB pups"))+

                scale_shape_manual(values = c(19,1,15,0), n

ame="", breaks=c("Freshwater M", "Freshwater P", "SSB M", "

SSB P"), labels=c("FWB mothers","FWB pups", "SSB mothers", 

"SSB pups"))+

                theme_bw()+

                theme(legend.position=c(0.84,0.84),legend.t

itle = element_blank(),legend.background = element_rect(siz

e=0.3,linetype="solid", colour ="black"))+

                theme(panel.grid.major = element_blank(), p

anel.grid.minor = element_blank())+
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                labs(x = "PC1 (78.0% explained variability)

", y = "PC3 (3.5% explained variability)")+

                theme(axis.title.y=element_text(size=12), a

xis.title.x  = element_text(size=12), axis.text.x=element_t

ext(size=10), axis.text.y  = element_text(size=10))

grid.arrange(L2_PC12, L2_PC13, ncol=2)

Figure 20. Principal component analysis of PICRUSt functional predictions at
hierachical level 2.

library(ggplot2)

library(gridExtra)

## Plot the PCA results for level 1

L1_PC12<-ggplot(pcs_metaL1.tab, aes(x=PC1, y=PC2))+

                geom_point(size=3.5, stroke=1, aes(colour=B

eachAge, shape=BeachAge))+

                scale_color_manual(values = c("dodgerblue3"

,"dodgerblue3","firebrick2","firebrick2"),name="",breaks=c(

"Freshwater M", "Freshwater P", "SSB M", "SSB P"), labels=c

("FWB mothers","FWB pups", "SSB mothers", "SSB pups"))+

                scale_shape_manual(values = c(19,1,15,0), n

ame="", breaks=c("Freshwater M", "Freshwater P", "SSB M", "

SSB P"), labels=c("FWB mothers","FWB pups", "SSB mothers", 

"SSB pups"))+

                theme_bw()+

                theme(legend.position="none")+

                theme(panel.grid.major = element_blank(), p

anel.grid.minor = element_blank())+

                labs(x = "PC1 (92.1% explained variability)

", y = "PC2 (5.5% explained variability)")+

                theme(axis.title.y=element_text(size=12), a

xis.title.x  = element_text(size=12), axis.text.x=element_t

ext(size=10), axis.text.y  = element_text(size=10))

L1_PC13<-ggplot(pcs_metaL1.tab, aes(x=PC1, y=PC3))+

                geom_point(size=3.5, stroke=1, aes(colour=B

eachAge, shape=BeachAge))+

                scale_color_manual(values = c("dodgerblue3"

,"dodgerblue3","firebrick2","firebrick2"),name="",breaks=c(

"Freshwater M", "Freshwater P", "SSB M", "SSB P"), labels=c

("FWB mothers","FWB pups", "SSB mothers", "SSB pups"))+

                scale_shape_manual(values = c(19,1,15,0), n

ame="", breaks=c("Freshwater M", "Freshwater P", "SSB M", "
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SSB P"), labels=c("FWB mothers","FWB pups", "SSB mothers", 

"SSB pups"))+

                theme_bw()+

                theme(legend.position=c(0.16,0.16),legend.t

itle = element_blank(),legend.background = element_rect(siz

e=0.3,linetype="solid", colour ="black"))+

                theme(panel.grid.major = element_blank(), p

anel.grid.minor = element_blank())+

                labs(x = "PC1 (92.1% explained variability)

", y = "PC3 (1.0% explained variability)")+

                theme(axis.title.y=element_text(size=12), a

xis.title.x  = element_text(size=12), axis.text.x=element_t

ext(size=10), axis.text.y  = element_text(size=10))

grid.arrange(L1_PC12, L1_PC13, ncol=2)

Figure 21. Principal component analysis of PICRUSt functional predictions at
hierachical level 1.
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