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This document provides all R codes for the analyses described in Grosser et
al. “Fur seal microbiota are shaped by the social and physical environment,
show mother-offspring similarities and are associated with host genetic
quality”. We hope that sharing this code alongside the paper will be useful for
other researchers. If you have any questions about the analyses feel free to
contact me at s.grosser[at]biologie.uni-muenchen.de.

We collected skin swabs and genetic samples from 48 Antarctic fur seals (A.
gazella) mother-offspring pairs from two breeding sites on Bird Island, South
Georgia (freshwater beach and special study beach) and used 16S amplicon
sequencing to characterise their bacterial communities. We hypothesise (i)
that bacterial diversity should be lower at the colony with high breeding
density (special study beach) due to the suppressive effects of elevated
social stress on microbial communities; and (ii) that mothers and their pups
should have similar microbiomes, reflecting their chemical similarity
(discovered in a previous study by Stoffel et al. 2015). We additionally
genotyped all of the individuals at 50 hypervariable microsatellite loci and
regressed multilocus heterozygosity against microbial diversity. According to
the leash model of host control, we would expect to find a negative
association between genome-wide individual heterozygosity and overall
bacterial diversity. For microbiome characterisation the V3-V4 region of the
16S rRNA gene was paired-end sequenced on an lllumina MiSeq instrument.
The paired-end reads were merged and clustered into 97% OTUs and an
OTU table was generated following the UPARSE pipeline (Usearch v.9.2.64).

Read counts

Because sequencing depth can vary between samples, we first visualise the
number of read pairs sequenced per sample and the number of sequences
that were successfully merged per sample. The highest read pair count is
157,204 (mother-M19), and the lowest 9,607 (pup-P39).

library(ggplot2)

## Read table containing information about the collected st
atistics during OTU table generation

stats. tab<-read.table("./AFSmicrobiome_SIl_SequencingStatsFi
le_Rinput_DatasetS4.txt", sep="\t", header=T)

## Plot reads per sample. Total number of reads pairs is pl
otted in lightgray; number of merged read pairs is plotted
in darkgray

beach_labels <- c(FWB = "Freshwater Beach', SSB = "Special

Study Beach'™)
#age labels <- c(Mother = "Mothers', Pup = "Pups')

ggplot()+
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facet_grid(.~Beach, drop=TRUE,space="free",scales="free",
labeller=labeller(Beach=beach_labels)) +

geom_bar(data=stats.tab,aes(x=SamplelD, y=TotalReads),sta
t="identity"”,fill="lightgrey", colour="darkgrey",width=_.7)+

geom_bar(data=stats.tab,aes(x=SamplelD, y=ReadsMerged),st
at="identity",fill="darkgrey", colour="darkgrey",width=_.7)+

ylab(**No. of read pairs')+

xlab(**'Sample ID"™)+

theme_bw(Q)+

guides(filI=FALSE) +

theme(panel .grid.major = element_blank(), panel._grid.mino
r = element_blank())+

theme(axis.text.x = element_text(angle=90, size=5), axis.
title.x = element_text(margin = margin(5, 0, 0, 0)))+

theme(axis.title.y=element_text(margin = margin(0, 15, O,

0)), axis.text.y = element_text(size=10))
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Figure 1. Number of read pairs per sample. Total number of paired-end raw reads
is shown in lightgray, and the number of merged reads is shown in darkgray. M
samples represent mothers, P samples represent pups. Matching numbers belong
to a mother-pup pair.

No. of read pairs

Individual relatedness

Before analysing the microbiome data of the mother-pup pairs, genetic
relatedness is calculated from 50 microsatellites (tested for LD and HWE).
Relatedness is calculated with the package “related” following the author’s
tutorial. Individual P22 is excluded from the analysis due to large amounts of
missing data.

library(related)
library(gridExtra)
library(reshape2)
library(dplyr)

## Load genotype data (IMPORTANT NOTE: delete the header ro
w containing loci names before loading!)

msats <- readgenotypedata(./AFSmicrobiome_SI Microsatellit
eGenotypes50_P22removed_colnames_Rinput_DatasetS5.txt'")

## Compare the different estimators
comp <- compareestimators(msats, 100)
wang 0.951875 --> use Wang
lynchli 0.950463

lynchrd 0.933553

quellergt 0.949013

HOH H OH OH H


https://frasierlab.files.wordpress.com/2015/03/tutorial1.pdf
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## Simulate for 100 individuals to assess power of the anal
ysis

sim <- familysim(msats$freqs, 100)

relsim <- coancestry(sim , wang = 1)

HH# user system elapsed

## 38.027 2.153 51.701

#it

## Reading output files into data.frames... Done!

relsim <- cleanuprvals(relsim$relatedness , 100)

## Extract only the column containing the wang estimates
relvalues <- as.numeric(relsim[,"wang"])

labell <- rep("PO™, 100)

label2 <- rep('Full™, 100)

label3 <- rep("Half", 100)

label4 <- rep(“Unrelated”, 100)

labels <- c(labell , label2 , label3 , label4)

relsimtab <- as.data.frame(cbind(relvalues, labels),stringsA
sFactors=FALSE)

relsimtab$relvalues <- as.numeric(relsimtab$relvalues)

## Calculate relatedness (wang estimator) for the fur seal
individuals
rel <- coancestry(msats$gdata, wang = 1)

Hit user system elapsed

## 0.511 0.047 0.906

#it

## Reading output files into data.frames... Done!

relvals <- rel$relatedness[,c("pair.no”,"indl.id","ind2.id"
»""wang™)]

## write the results to a table and manually add a column d
efining status of a pair as "unrel' or "pair"

# write.table(relvals, "./relatednessWang50Msats_P22removed
-txt",sep = "\t",quote = FALSE)

relvals2 <- read.table("./AFSmicrobiome_SI_relatednessWang5
OMsats_Rinput DatasetS6.txt",sep = ""\t",header=TRUE)

## Boxplots for the simulation results
q <- ggplot(relsimtab, aes(x=labels, y=relvalues)) +
geom_boxplot(fill="lightgrey') +
theme(legend.position="none") +
theme_bw() +
theme(panel .grid.major = element_blank(),panel.grid.m
inor = element_blank()) +
ylab(*'Relatedness Estimate (Wang)')+
xlab(*'Relatedness Category')+
coord_cartesian(ylim = c(-0.3, 0.7))+
theme(axis.text.x = element_text(size=10), axis.title
-x = element_text(margin = margin(10, 0, 0, 0)))+
theme(axis.title.y=element_text(margin = margin(0, 15
, 0, 0)), axis.text.y = element_text(size=10))

## Make a boxplot for the pairs and unrelated categories an
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d mark the outlier points with the number of the comparison

is_outlier <- function(x) {

return(x < quantile(x, 0.25) - 1.5 * IQR(xX) | x > quantil
e(x, 0.75) + 1.5 * IQR(X))
}
relvals2[,"pairNames™] <- paste(relvals2[,2], relvals2[,3]
. sep=""")

b <-relvals2 %>%
group_by(pairs) %>%
mutate(outlier = ifelse(is_outlier(wang), pairNames , as.
numeric(NA))) %>%
ggplot(., aes(x = factor(pairs), y = wang)) +
geom_boxplot(fill="lightgrey') +
xlab(*'Relatedness Category')+
ylab("""")+
theme_bw() +
theme(panel .grid.major = element_blank(),panel .grid.minor
= element blank()) +
coord_cartesian(ylim = c(-0.3, 0.7))+
theme(axis.text.x = element_text(size=10), axis.title.x =
element_text(margin = margin(10, 0, 0, 0)))+
theme(axis.title.y=element_text(margin = margin(0, 15, O,
0)), axis.text.y = element_text(size=10))+
geom_text(aes(label = outlier), na.rm = TRUE, hjust = -0.
3,size=2)

grid.arrange(q,b, ncol=2)
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Figure 2. Pairwise relatedness estimates. The left panel shows relatedness values
for simulated pairs of known relatedness. Estimates for Antarctic fur seal individuals
are shown in the right panel. Estimates are divided into expected mother-pup pair
(PO) and unrelated pairwise comparisons.

The wang estimator seems to be suitable to reliably distinguish parent-
offspring pairs from unrelated individual pairs. The results show that five of
the apparent mother-pup pairs are not related. These five pairs are all from
special study beach (high-density colony). This suggests, that pairs have
been wrongly identified in the field (allo-suckling occurs in this species). Pairs
identified as unrelated by this analysis are: Pair49, Pair46, Pairl5, Pairl3,
Pairll. An additional parentage analsis with the software Colony also
confirms these pairs to be unrelated. Based on these results the five pairs will
be treated as unrelated in analyses that require pair information.

The A. gazella skin microbiome
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## Convert the UPARSE .sintax classification table into a d
ata frame
## This script was kindly provided by Dr. Ulrich Knief

## Sintax format:

# Otul d:Bacteria(1.0000),p:"Proteobacteria™(1.0000),c:Gam
maproteobacteria(l.0000),0:Pseudomonadales(1.0000),f:Moraxe
Ilaceae(1.0000),g:Psychrobacter(1.0000),s:Psychrobacter_mar
itimus(0.3100) + d:Bacteria,p:"Proteobacteria',c:Gammapro
teobacteria,o:Pseudomonadales, f:Moraxel laceae,g:Psychrobact
er

## Phyloseq required format

# Domain Phylum Class Order Family Genus Species
# OTU1 "b" b v v i n' vyt
path = "_/*

separators <- c('d","p","c",""0o","f","g","s")

dat <- read.table(paste(path, "AFSmicrobiome_SI_otuRDPclass
ification_Rinput_DatasetS7.sintax', sep="""), header=FALSE,
sep=""+", stringsAsFactors=FALSE)

## Get OTU IDs
0TUs <- unlist(lapply(strsplit(as.character(dat$vl), " \t",fi
xed = TRUE),"[[",1))

## Create data frame

tab <- data.frame(matrix(rep(NA,8*length(0TUs)),ncol=8))
colnames(tab) <- c("OTU","Domain","Phylum","Class","Order",
"Family","Genus","Species')

## Loop over all rows
for(i in l:nrow(tab)) {

out <- unlist(strsplit(as.character(dat$v2), ",", fixed =
TRUE)[i])

## Find and add missing values

Add <- which(!(separators %in% gsub('\t"”, ", unlist(lapp
ly(strsplit(as.character(out), ":", fixed = TRUE),"[[",1)))
)

if(length(Add)>0) { for( in 1:length(Add)) { out <- c(ou
t[1: (Add[j]1-1)].,paste(separators[Add[j]1]," :NA",sep="""),out[
Add[j]:length(out)]); out <- out[1:7] }}

## 1f missing values occur always on the right, this will
work:

#H# while(length(out) < 7) { out <- c(out,":NA™) }

out <- unlist(lapply(strsplit(as.character(out), ":', Ffix
ed = TRUE),"[[",2))

tab[i, ] <- c(OTUs[i],out)
}

# write.table(tab,paste(path, "AFSmicrobiome_SI_otuRDPclass
ification_phylosegln_Rinput DatasetS8.txt", sep="""), append
=FALSE, row.names=FALSE, col.names=TRUE, sep='\t', quote=FA
LSE, eol="\n")

## Manually change " "™ to a space and remove '"/Chloroplast™
from the phylum column annotation *Cyanobacteria/Chloropla
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st" for better readability of plots (The Phylum level annot
ation is always Cyanobacteria/Chloroplast for all Cyanobact
eria. However, none of the sequences should be chloroplast
derived in this analysis as they have been filtered after t
he OTU clustering.)

library(phyloseq)
library(ggplot2)
library(vegan)
library(dplyr)
library(scales)
library(grid)
library(reshape2)
library(grideExtra)
library(knitr)

## Import the OTU table

otu.tab <- as.matrix(read.table(./AFSmicrobiome_SI_OTUtabl
e _fTinal_trimmed_allSamples Rinput DatasetS9.txt", header=T,
sep= "\t", row.names=1, na.strings=c(""," "NA")))

## Import the rarefied OTU table (10,000 reads/sample)
otu_rarefied.tab <- as.matrix(read.table(*./AFSmicrobiome_S
I_OTUtable_final_trimmed_rarefl0000_Rinput_DatasetS10.txt",
header=T, sep= "\t", row.names=1, na.strings=c(""," "NA™)))

## Import the taxonomy table

tax.tab <- as.matrix(read.table(""./AFSmicrobiome_SI_otuRDPc
lassification_phylosegln_Rinput_DatasetS8.txt", header=T, s
ep= "\t", row.names=1, na.strings=c("","NA")))

## Import sample meta data

meta.tab <- read.table("./AFSmicrobiome_SI_Metadata_allSamp
les_Rinput_DatasetS1l.txt", header=T, sep= "\t", row.names=
1, na.strings=c("","NA"™))

## Combine all files into a phyloseq object

otu.obj <- otu_table(otu.tab, taxa_are_rows = TRUE)

tax.obj <- tax_table(tax.tab)

meta.obj <- sample_data(meta.tab)

otu_rarefied.obj <- otu_table(otu_rarefied.tab, taxa_are_ro
ws = TRUE)

## Make a phyloseq object

phylo.obj <- phyloseq(otu.obj, tax.obj, meta.obj)
phylo_rarefied.obj <- phyloseq(otu_rarefied.obj, tax.obj, m
eta.obj)

## Look at the phyloseq object
phylo.obj

## phyloseq-class experiment-level object

## otu_table() OTU Table: [ 788 taxa and 96 sampl
es ]

## sample_data() Sample Data: [ 96 samples by 7 sampl
e variables ]

## tax_table() Taxonomy Table: [ 788 taxa by 7 taxonom
ic ranks ]

## Convert the OTU and taxonomy tables into a data frame
otus <- as.data.frame(otu.tab)
otus <- cbind(otus, rownames(otus))
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colnames(otus)[length(otus)] <- "OTU"

tax <- as.data.frame(tax.tab)

tax <- cbind(tax, rownames(tax))

colnames(tax)[length(tax)] <- "OTU"

## Merge the tables

otu_tax <- dplyr::left_join(otus, tax, by = "0TU"™)

## Calculate the total number of reads for each OTU and add
a column to the data frame

otu_tax <- cbind(otu_tax, rowSums(otu_tax[,1:96]))
colnames(otu_tax)[105] <- "TotalCount"

## Remove unwanted levels and rename NA columns to "undefin
ed"

otu_tax$Phylum <- droplevels(otu_tax$Phylum)
levels(otu_tax$Phylum) <- c(levels(otu_tax$Phylum), "undefi
ned™)

otu_tax$Phylum[is.na(otu_tax$Phylum)] <- “undefined"
levels(otu_tax$Genus) <- c(levels(otu_tax$Genus), "undefine
d™)

otu_tax$Genus[is.na(otu_tax$Genus)] <- "undefined"

## Make a table with phyla abundance from the unadjusted co
unts
TotalPhylaCounts <- as.data.frame(aggregate(TotalCount ~ Ph
ylum, FUN = sum, data=otu_tax))
TotalPhylaCounts <- dplyr::arrange(TotalPhylaCounts, desc(T
otalCount))
## Calculate percentages
TotalPhylaCounts <- cbind(TotalPhylaCounts, (TotalPhylaCount
s$TotalCount*100)/sum(TotalPhylaCounts$TotalCount))
colnames(TotalPhylaCounts)[3] <- "Abundance™
## Check i1If all reads add up to the total read count of 3,1
73,550
#sum(TotalPhylaCounts$TotalCount)
## Count the number of OTUs for each phylum
df <- data.frame(Phylum=character(),NoOTUs = integer(), str
ingsAsFactors=FALSE)
for (i in TotalPhylaCounts$Phylum) {

len <- length(which(otu_tax$Phylum == 1))

df2 <- as.data.frame(cbind(Phylum = i, NoOTUs = len),
stringsAsFactors=FALSE)

df <- rbind(df,df2)
}
df$NoOTUs <- as.numeric(df$NoOTUs)
## Add this information to the abundance table
TotalPhylaCounts <- dplyr::left_join(TotalPhylaCounts,df, t
ax, by = "Phylum')
colnames(TotalPhylaCounts) <- c("Phylum™,"Read Count', "Abu
ndance (%), "No of. OTUs™)

## Do the same for the genus level

TotalGenusCounts <- as.data.frame(aggregate(TotalCount ~ Ge
nus, FUN = sum, data=otu_tax))

TotalGenusCounts <- dplyr::arrange(TotalGenusCounts, desc(T
otalCount))

TotalGenusCounts <- cbind(TotalGenusCounts, (TotalGenusCount
s$TotalCount*100)/sum(TotalGenusCounts$TotalCount))
colnames(TotalGenusCounts)[3] <- "Abundance™

## Count the number of OTUs for each genus

df <- data.frame(Genus=character(),NoOTUs = integer(), stri
ngsAsFactors=FALSE)
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for (i in TotalGenusCounts$Genus) {

len <- length(which(otu_tax$Genus == i))

df2 <- as.data.frame(cbind(Genus= i, NoOTUs = len),st
ringsAsFactors=FALSE)

df <- rbind(df,df2)
}
df$NoOTUs <- as.numeric(dfSNoOTUS)
## Add this information to the abundance table
TotalGenusCounts <- dplyr::left_join(TotalGenusCounts,df, t
ax, by = "Genus')
colnames(TotalGenusCounts) <- c(*"Genus'","Read Count'™, "Abun
dance (%), "No of. OTUs'")

First, we examine the presence and abundance of bacterial phyla in the
Antarctic fur seal skin microbiome.

library(kableExtra)

## Make a table for phyla abundance

kable(TotalPhylaCounts ,format = "html", digits = 2, row.na

mes = FALSE, caption = "Table 1. Bacterial phyla detected i

n the Antarctic fur seal skin microbiome.") %>%
kable_styling(bootstrap_options = c("'condensed","striped"

), full_width = F)

Table 1. Bacterial phyla detected in the Antarctic fur seal skin microbiome.

Phylum Read Count Abundance (%) No of. OTUs
Proteobacteria 1231373 38.80 210
Bacteroidetes 695050 21.90 165
Firmicutes 676701 21.32 134
Actinobacteria 360848 11.37 104
Deinococcus-Thermus 32948 1.04 6
Cyanobacteria 32410 1.02 11
Verrucomicrobia 31885 1.00 35
Candidatus Saccharibacteria 29301 0.92 36
Fusobacteria 26987 0.85 9
Acidobacteria 24372 0.77 18
undefined 17517 0.55 33
Planctomycetes 3892 0.12 5
Gemmatimonadetes 2502 0.08 4
Chloroflexi 2386 0.08 5
SR1 1641 0.05 3
Tenericutes 1259 0.04 2
Armatimonadetes 1101 0.03 3
BRC1 760 0.02 2
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Microgenomates 263 0.01 1
Synergistetes 183 0.01 1
Ignavibacteriae 171 0.01 1

Then we have a look at the presence and abundance of bacterial genera.

library(kableExtra)

## Make a table for genus abundance

kable(TotalGenusCounts, format = "html", digits = 2, row.na

mes = FALSE, caption = "Table 2. Bacterial genera detected

in the Antarctic fur seal skin microbiome™) %>%
kable_styling(bootstrap options = c("'condensed","striped"

), full_width = F)

Table 2. Bacterial genera detected in the Antarctic fur seal skin microbiome

Read Abundance No of.
Genus Count (%) OTUs
undefined 870685 27.44 383
Psychrobacter 857218 27.01 8
Chryseobacterium 207721 6.55 9
Jeotgalibaca 91772 2.89 1
Streptococcus 60549 1.91 4
Gelidibacter 56676 1.79 1
Clostridium sensu stricto 56256 1.77 10
Arthrobacter 54460 1.72 2
Clostridium XI 47155 1.49 2
Jeotgalicoccus 46836 1.48 2
Tissierella 44746 141 4
Otariodibacter 44194 1.39 2
Flavobacterium 40695 1.28 17
Polaromonas 34744 1.09 3
Deinococcus 32948 1.04 6
Planococcus 30350 0.96 1
Saccharibacteria genera incertae 24111 0.76 26
sedis
Nocardioides 22547 0.71 12
Bacteroides 22041 0.69 5

Atopostipes 20383 0.64 2
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Aequorivita
Fusobacterium
Agrococcus
Granulosicoccus
Luteolibacter
Acinetobacter
Neisseria
Carnobacterium
llumatobacter
Sporosarcina
Aquihabitans
Gplv
Lactobacillus
Atopobacter
Blautia
Erysipelothrix
Anaerococcus
Thermomonas
Escherichia/Shigella
Porphyromonas
Marinobacter
Hymenobacter
Pedobacter
Leifsonia

Dietzia
Arcanobacterium
Polymorphobacter
Staphylococcus
Lacihabitans
Streptobacillus
Eubacterium
Arenibacter
Pricia
Dokdonella

Clostridium XIVb

18827

18589

18569

18143

15901

15767

14924

14596

14174

13841

12667

11124

10918

10821

8895

8753

8526

8498

8387

8122

7551

7429

6764

6290

6261

6135

6036

5918

5658

5386

5114

4919

4886

4857

4760

0.59

0.59

0.59

0.57

0.50

0.50

0.47

0.46

0.45

0.44

0.40

0.35

0.34

0.34

0.28

0.28

0.27

0.27

0.26

0.26

0.24

0.23

0.21

0.20

0.20

0.19

0.19

0.19

0.18

0.17

0.16

0.15

0.15

0.15

0.15

10

11
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Corynebacterium
Coxiella
Ornithinicoccus
Helcococcus
Lachnospiracea incertae sedis
Spirosoma
Methylobacterium
Rhodoferax
Capnocytophaga
Brachybacterium
Psychromonas
Bisgaardia
Rhodococcus
Gemmatimonas
Moraxella
Pseudomonas
Brumimicrobium
Globicatella
Ferruginibacter
Sphingorhabdus
Trichococcus
Sphingomonas
Rhodanobacter
Collinsella
Nakamurella
Tomitella
Finegoldia
Butyricicoccus
Lysobacter

Gp6
Blastocatella
Terrimonas
Dyadobacter
Enterococcus

Spartobacteria genera incertae

4692

4671

4509

4018

3844

3830

3806

3731

3315

3238

3238

2676

2555

2502

2467

2461

2448

2399

2396

2393

2345

2220

2110

2107

2009

1991

1923

1919

1853

1823

1797

1736

1714

1699

1625

0.15

0.15

0.14

0.13

0.12

0.12

0.12

0.12

0.10

0.10

0.10

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.07

0.07

0.07

0.07

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.05

0.05

0.05

0.05
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sedis
Leadbetterella
Peptoniphilus
Algoriphagus
Roseomonas
Acetoanaerobium
Prosthecobacter
Mycoplasma
Macrococcus
Parvimonas
Terrisporobacter
Labilithrix
Methylotenera
Hydrogenophaga
Coenonia
Sulfitobacter
Gpl6
Aeromicrobium
Devosia
Simplicispira
Peptostreptococcus
Jannaschia
Rheinheimera
Rubritalea
Catellicoccus
Loktanella
Desulfobulbus
Pseudoalteromonas

Armatimonas/Armatimonadetes
gpl

Alloprevotella
Demequina
Rhodobacter
Nitrosospira

Alkanindiges

1623

1607

1483

1461

1429

1354

1259

1218

1204

1201

1189

1185

1175

1152

1136

1135

1122

1114

1101

1072

1053

1029

950

947

923

921

901

889

841

835

835

830

829

0.05

0.05

0.05

0.05

0.05

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03
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Campylobacter
Lewinella
Propionivibrio
Arenimonas
Alistipes
Flavimarina
Fusibacter
Ezakiella
Anaerovorax
Hahella
Facklamia
Mesorhizobium
Tannerella
Sutterella
Pyrinomonas
Rhizobacter
Anaerobiospirillum
Aquabacterium
Oceanisphaera
Thiobacillus
Bradymonas
Allofustis
Paludibacter
Proteocatella
Faecalibacterium
Marmoricola
Maribacter
Desulfonispora
Geobacter
Peredibacter
Sphingobium
Lactococcus
Phascolarctobacterium
Methylobacter

Planktotalea

788

787

786

766

760

756

708

695

691

675

610

604

580

573

554

535

530

501

495

460

459

450

447

437

431

419

402

385

382

380

374

313

369

353

352
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0.02
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Massilia
Nosocomiicoccus
Pseudoxanthomonas
Rhizobium
Undibacterium

Deefgea

Peptostreptococcaceae incertae

sedis
Aerococcus
Oleispira
Gpl

Desulfobacterium

SR1 genera incertae sedis

Cocleimonas
Roseiarcus

Taibaiella

Subdivision3 genera incertae

sedis

Slackia
Romboutsia
Vagococcus
Dialister
Leptotrichia
Gpl
Terrimicrobium
Weissella
Mycobacterium
Acidiphilium
Cryomorpha
Polaribacter
Terriglobus
Arcicella
Catonella
lamia

Gpl7

Saccharofermentans

346

335

332

329

329

327

322

321

317

312

306

299

297

287

285

283

247

244

243

241

241

237

229

216

211

206

204

203

195

190

190

180

178

176

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01
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0.01
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Brevundimonas 172 0.01 1
Arcobacter 169 0.01 1
Actinomyces 164 0.01 1
Oscillibacter 164 0.01 1

The core microbiome

Next, we examine the core microbiome. We can define the core microbiome
of a group of hosts as the OTUs that are present in a certain percentage of
the sampled individuals. Here we want to know which OTUs are present in all
of the sampled individuals and in 90% of the sampled individuals.

## Get the core microbiome (i.e. all OTUs that are present
in 100% of the samples)

core.tab <- otu_tax[which((apply(otu_tax[,1:96], 1, functio
n(row) all(row =0 )))=="TRUE"),]

#dim(core.tab) # 29 0OTUs are present in all samples

## Make a table for the taxonomic information of the core m
icrobiome

core.tax <- core.tab[,c(97:105)]

## Calculate the percentages

core.tax <- cbind(core.tax, (core.tax$TotalCount*100)/317355
)

core_print._tax <- core.tax[,c('OTU","Phylum™, " Family', " "Genu
s","(core.tax$TotalCount * 100)/3173550")]
colnames(core_print.tax)[5] <- "Abundance (%)"

## Export as tab delimited table

# write.table(core_print.tax, "./AFSCoreMicrobiomeOTUs.txt"
, sep = "\t", quote = FALSE)

## Get the core microbiome present in 90% of the samples

## 90% of samples is 86.4, i.e, OTUs have to be present in
87 or more samples.

core90.tab <- otu_tax[apply(otu_tax[,1:96] != 0, 1, sum) >=
87, 1

#dim(core90.tab) # 123 OTUs are present in 90% of the sampl
es

## Make a table with the additional OTUs not already presen
t in the 100% core microbiome table

core90.tax <- core90.tab[,c(97:105)]

## Calculate the percentages

core90.tax <- cbind(core90.tax, (core90.tax$TotalCount*100)/
3173550)

## Remove the OTUs that are already present in the 100% cor
e microbiome table

core90_reduced.tax <- core90.tax[-which(core90.tax$0TU %in%
core.tax$0TU), 1

core90_reduced_print.tax <- core90_reduced.tax[,c("'OTU",""Ph

ylum™,"Fami ly","Genus", " (core90. tax$TotalCount * 100)/31735
501

colnames(core90_reduced_print.tax)[5] <- "Abundance (%)™

## Export as tab delimited table

# write.table(core90_reduced_print.tax, ' ./AFSCoreMicrobiom
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e900TUs.txt", sep = "\t', quote = FALSE)

kable(core_print.tax, format = "html", digits = 2, row.name
s = FALSE, caption = "**Table 3.** Antarctic fur seal skin
core microbiome (OTUs present in all sampled individuals)'™)

%>%

kable_styling(bootstrap_options = c(‘'condensed", " striped"
), Ffull_width = F)

Table 3. Antarctic fur seal skin core microbiome (OTUs present in all sampled
individuals)

oTuU

Otul

Otu3

Otu22

Otu4

Otu2253

Otu6

Otul3

Otu29

Otul6

Otuls

Otu31l

Otull

Otul4d

Otu5

Otu26

Otul8

Otul9

Otu78

Otul7

Otu36

Otu401

Otul771

Otu25

Phylum
Proteobacteria
Bacteroidetes
Proteobacteria
Firmicutes
Proteobacteria
Actinobacteria
Proteobacteria
Firmicutes
Actinobacteria

Firmicutes

Actinobacteria
Actinobacteria

Firmicutes

Firmicutes

Deinococcus-
Thermus

Bacteroidetes

Firmicutes

Firmicutes
Bacteroidetes
Actinobacteria
Proteobacteria
Bacteroidetes

Firmicutes

Family
Moraxellaceae
Flavobacteriaceae
Moraxellaceae
Carnobacteriaceae
Moraxellaceae
Intrasporangiaceae
Moraxellaceae
Streptococcaceae
Propionibacteriaceae

Clostridiales Incertae
Sedis Xl

Micrococcaceae
Micrococcaceae

Clostridiaceae 1

Peptostreptococcaceae

Deinococcaceae

Flavobacteriaceae

Clostridiaceae 1

Carnobacteriaceae
Flavobacteriaceae
Microbacteriaceae
Moraxellaceae
Flavobacteriaceae

Carnobacteriaceae

Genus
Psychrobacter
Chryseobacterium
Psychrobacter
Jeotgalibaca
Psychrobacter
undefined
Psychrobacter
Streptococcus
undefined

Tissierella

Arthrobacter
Arthrobacter

Clostridium sensu
stricto

Clostridium XI

Deinococcus

Flavobacterium

Clostridium sensu
stricto

Atopostipes
undefined
Agrococcus
Psychrobacter
Chryseobacterium

Carnobacterium

Abundance
(%)

17.28
5.50
3.79
2.89
2.83
2.47
2.12
1.60
1.29

0.99

0.88
0.84

0.83

0.80

0.67

0.60

0.59

0.59
0.59
0.59
0.57
0.50

0.46
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Otu32

Otu43

Otu82

Otu72

Otul45

Otu488

kable(core90_reduced_print.tax, format = "html*, digits

Firmicutes
Actinobacteria
Bacteroidetes
Proteobacteria
Actinobacteria

Actinobacteria

Planococcaceae
Acidimicrobiaceae
Flavobacteriaceae
Rhodobacteraceae
Microbacteriaceae

Nocardioidaceae

Sporosarcina
llumatobacter
undefined
undefined
Leifsonia

Nocardioides

, row.names = FALSE, caption = "**Table 4.** Antarctic fur
seal skin extended core microbiome (OTUs present in 90% of
the sampled individuals)'™) %>%

kable_styling(bootstrap options = c("'condensed","striped"

), Ffull_width = F)

0.44

0.37

0.34

0.21

0.20

0.11

Table 4. Antarctic fur seal skin extended core microbiome (OTUs present in 90% of the
sampled individuals)

oTuU

Otu9

Otu7

Otul2

Otu24

Otu83

Otu90

Otu60

Otu8

Otu995

Otu93

Otu51

Otu38

Otu35

Otu54

Otul29

Otu80

Otu2l

Otu28

Otul41l

Otu57

Phylum
Bacteroidetes
Bacteroidetes
Firmicutes
Bacteroidetes
Proteobacteria
Proteobacteria
Proteobacteria
Firmicutes
Proteobacteria
Proteobacteria
Proteobacteria
Firmicutes
Proteobacteria
Bacteroidetes
Bacteroidetes
Firmicutes
Cyanobacteria
Fusobacteria
Proteobacteria

Proteobacteria

Family
Flavobacteriaceae
Flavobacteriaceae
Planococcaceae
Flavobacteriaceae
Comamonadaceae
Pasteurellaceae

Comamonadaceae

Peptostreptococcaceae

Pasteurellaceae
Rhodobacteraceae
Neisseriaceae
Clostridiaceae 1
Moraxellaceae
Bacteroidaceae
Chitinophagaceae
Carnobacteriaceae
Family IV
Fusobacteriaceae
Xanthomonadaceae

Enterobacteriaceae

Genus
Gelidibacter
undefined
undefined
undefined
Polaromonas
Otariodibacter
undefined
Clostridium XI
Otariodibacter
undefined
Neisseria
undefined
Acinetobacter
Bacteroides
undefined
Atopobacter
Gplv
Fusobacterium
Thermomonas

Escherichia/Shigella

Abundance
(%)

1.79
1.74
1.31
1.04
0.88
0.86
0.73
0.68
0.54
0.49
0.47
0.46
0.44
0.40
0.40
0.34
0.32
0.29
0.27

0.26
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Otu84

Otus50

Otu59

Otu4d7

Otu96

Otu45

Otu52

Otu53

Otul02

Otu68

Otul01

Otu46

Otu76

Otu86

Otu39

Otu88

Otul57

Otu74

Otu2175

Otu73

Otu339

Otu49

Otu228

Otu85

Otu55

Otu213

Otul46

Otu69

Otu189

Otul22

Otu214

Otul03

Actinobacteria
Actinobacteria

Firmicutes

Firmicutes

Actinobacteria
Firmicutes
Bacteroidetes
Firmicutes
Proteobacteria
Actinobacteria
Bacteroidetes
Actinobacteria

Deinococcus-
Thermus

Actinobacteria
Firmicutes
Actinobacteria
Firmicutes
Firmicutes
Proteobacteria
Bacteroidetes
Proteobacteria
Firmicutes
Bacteroidetes
Bacteroidetes

Firmicutes

Verrucomicrobia

Bacteroidetes
Actinobacteria

Firmicutes

Actinobacteria
Proteobacteria

Proteobacteria

Intrasporangiaceae

NA

Clostridiales Incertae

Sedis XI

Clostridiales Incertae

Sedis XI
lamiaceae
Ruminococcaceae
Flavobacteriaceae
Lachnospiraceae
Burkholderiaceae
Nocardioidaceae
Flavobacteriaceae
NA

Deinococcaceae

Dietziaceae
Lachnospiraceae
Actinomycetaceae
Planococcaceae
Erysipelotrichaceae
Comamonadaceae
Chitinophagaceae
Comamonadaceae
Lachnospiraceae
NA
Flavobacteriaceae

Eubacteriaceae

Verrucomicrobiaceae

Bacteroidaceae
Intrasporangiaceae

Clostridiaceae 1

Micrococcaceae
Moraxellaceae

Xanthomonadaceae

undefined
undefined

Anaerococcus

Tissierella

Aquihabitans
undefined
Flavobacterium
Blautia

undefined
Nocardioides
Chryseobacterium
undefined

Deinococcus

Dietzia
undefined
Arcanobacterium
undefined
Erysipelothrix
Polaromonas
undefined
undefined
undefined
undefined
Flavobacterium
Eubacterium
Luteolibacter
Bacteroides
Ornithinicoccus

Clostridium sensu
stricto

undefined
Psychrobacter

Dokdonella

0.26

0.26

0.26

0.25

0.25

0.24

0.24

0.24

0.24

0.23

0.23

0.21

0.20

0.20

0.20

0.19

0.19

0.19

0.19

0.18

0.17

0.17

0.17

0.16

0.16

0.16

0.16

0.14

0.14

0.14

0.13

0.13
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Otu58

Otu1883

Otu209

Otul30

Otul05

Otu89

Otu65

Otull5

Otul67

Otul20

Otul43

Otul35

Otu75

Otu201

Otu95

Otul77

Otul74

Otul08

Otul56

Otul10

Otul33

Otu236

Otul36

Otu629

Otu234

Otu207

Otul48

Otul21l

Otu222

Proteobacteria
Proteobacteria
Actinobacteria
Firmicutes

Firmicutes

Actinobacteria

Candidatus
Saccharibacteria

Firmicutes
Bacteroidetes

Candidatus
Saccharibacteria

Actinobacteria
Firmicutes
Fusobacteria
Firmicutes

Firmicutes

Candidatus
Saccharibacteria

Bacteroidetes

Actinobacteria
Proteobacteria
Proteobacteria
Proteobacteria
Actinobacteria
Actinobacteria
Proteobacteria
Actinobacteria

Actinobacteria

Firmicutes
Firmicutes

Proteobacteria

Methylobacteriaceae
Comamonadaceae
Dermacoccaceae
Ruminococcaceae

Clostridiales Incertae
Sedis XI

NA

NA

Streptococcaceae
Cytophagaceae

NA

lamiaceae
Erysipelotrichaceae
Fusobacteriaceae
NA

Clostridiaceae 1

NA

Chitinophagaceae
Nocardiaceae
Xanthomonadaceae
Rhodobacteraceae
NA
Acidimicrobiaceae
Coriobacteriaceae
Comamonadaceae
Nakamurellaceae

Corynebacterineae
incertae sedis

Lachnospiraceae
Ruminococcaceae

Xanthomonadaceae

Methylobacterium
Rhodoferax
undefined
undefined

Helcococcus

undefined

Saccharibacteria
genera incertae
sedis

Streptococcus
Hymenobacter

Saccharibacteria
genera incertae
sedis

Aquihabitans
Erysipelothrix
undefined
undefined

Clostridium sensu
stricto

Saccharibacteria
genera incertae
sedis

Ferruginibacter
Rhodococcus
undefined
undefined
undefined
llumatobacter
Collinsella
undefined
Nakamurella

Tomitella

Clostridium XIVb
Butyricicoccus

Lysobacter

0.12

0.12

0.12

0.12

0.11

0.11

0.11

0.11

0.11

0.11

0.10

0.09

0.09

0.09

0.08

0.08

0.08

0.08

0.08

0.07

0.07

0.07

0.07

0.06

0.06

0.06

0.06

0.06

0.06
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Otul017 Proteobacteria ~ Xanthomonadaceae Rhodanobacter
Otu691 Bacteroidetes Flavobacteriaceae Chryseobacterium
Otu211 Actinobacteria Nocardiaceae undefined
Otu270 Bacteroidetes Cyclobacteriaceae Algoriphagus
Otul469 Bacteroidetes Flavobacteriaceae Chryseobacterium
Otul703 Firmicutes Lachnospiraceae Blautia

Otu2423 Bacteroidetes Chitinophagaceae undefined
Otu365 Actinobacteria Nocardioidaceae Aeromicrobium
Otu332 Actinobacteria NA undefined
Otu458 Actinobacteria Microbacteriaceae undefined
Otu308 Actinobacteria Demequinaceae Demequina
Otu429 Actinobacteria NA undefined
Otu612 Actinobacteria Microbacteriaceae undefined

Bacterial abundance

Above we have examined the overall abundance of the different bacterial
phyla on Antarctic fur seal skin (Table 1). We now want to visualise the
abundance of bacterial phyla for each individual separately. We only display
phyla with more than 1% abundance in each sample.

library(phyloseq)
library(scales)
library(reshape2)
library(dplyr)

## Plot phyla relative abundance for each individual (Phyla
with more than 1% abundance).
## Non-normalised data (plot looks the same when rarefied O
TU table is used)
afs_phylum <- phylo.obj %>%
tax_glom(taxrank = "Phylum™) %>% # ag
glomerate at phylum level
transform_sample_counts(function(x) {x/sum(x)} ) %>% # Tr
ansform to rel. abundance

psmelt() %>% # Me
It to long format

filter(Abundance > 0.01) %>% # Fi
Iter out low abundance taxa

arrange(desc(Abundance)) # So

rt data frame alphabetically by phylum

## Define phylum colours

phylum_colors <- c("#673770", "#5F7FC7", "orange","#DA5724"
, "'#508578", "#CD9BCD", "#AD6F3B', "#CBD588","#D14285", '"#6
52926™ , "#C84248", "#8569D5')

## Define plot labels

beach_labels <- c(Freshwater = "FWB'™, SSB = "'SSB')

0.05

0.05

0.05

0.05

0.04

0.04

0.04

0.04

0.03

0.03

0.03

0.03

0.02
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age_labels <- c(M = "Mothers™, P = "Pups™)

ggplot(afs_phylum, aes(x = PlotLabel, y = Abundance, fill =
Phylum)) +

facet_grid(Beach~Age, drop=TRUE,space="free",scales="
free', labeller=1abeller(Age=age_labels,Beach=beach_labels))
+

geom_bar(stat = "identity') +

theme_bw() +

scale_fill_manual(values = phylum_colors) +

theme(axis.text.x = element_blank(),axis.ticks = elem
ent_blank(),axis.title.x = element_blank(), axis.title.y =
element_text(size=14), axis.text.y = element_text(size=12))
+

guides(fill = guide_legend(keywidth = 1, keyheight =
1) +

theme(legend.text = element_text(size = 11),legend.ti
tle = element_text(face="bold™)) +

ylab('Relative abundance (phyla > 1%) \n'™) +

theme(panel .grid.major = element_blank(),panel.grid.m
inor = element_blank()) +

theme(panel .spacing.x = unit(0, "lines™))+

theme(strip.text.x = element_text(size=12), strip.tex
t.y = element_text(size=12))

Mothers ] Pups

il
ik

Figure 3. Relative abundance of bacterial phyla present in each sample based on
non-normalised counts. For each sample only phyla with an abundance > 1% are
shown (not all columns add up to 1.0).
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## Same plot as above but plotting the rarefied data.

library(phyloseq)
library(scales)
library(reshape2)

## Plot phyla relative abundance for each individual (Phyla

with more than 1% abundance)

## Rarefied data

afs_phylum_rarefied <- phylo_rarefied.obj %>%
tax_glom(taxrank = "Phylum™) %>% # ag

glomerate at phylum level
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transform_sample_counts(function(x) {x/sum(x)} ) %>% # Tr
ansform to rel. abundance

psmelt() %>% # Me
It to long format
filter(Abundance > 0.01) %>% # Fi

Iter out low abundance taxa
arrange(desc(Abundance))
# Sort data frame alphabetically by phylum

phylum_colors <- c("#673770", "#5F7FC7'", "orange","#DA5724"
, "'#508578'", "#CD9BCD", "#AD6F3B', "#CBD588","'#D14285", "#6
52926 , "#(C84248', "#8569D5')

beach_labels <- c(Freshwater = "‘Freshwater Beach™, SSB = "'S
pecial Study Beach')

age_labels <- c(M = "Mothers™, P = "Pups")

ggplot(afs_phylum_rarefied, aes(x = PlotLabel, y = Abundanc
e, Fill = Phylum)) +

facet_grid(Beach~Age, drop=TRUE,space="free",scales="
free', labeller=1abeller(Age=age_labels,Beach=beach_labels))
+

geom_bar(stat = "identity™) +

theme_bw()+

scale_fill_manual(values = phylum colors) +

theme(axis.text.x = element_blank(),axis.ticks = elem
ent_blank(),axis.title.x = element_blank(), axis.title.y =
element_text(size=12), axis.text.y = element_text(size=10))
+

guides(fill = guide_legend(keywidth = 1, keyheight =
1)) +

theme(legend.text = element_text(size = 10),legend.ti
tle = element_text(face="bold"))+

ylab(*'Relative abundance (phyla > 1%) \n') +

theme(panel .grid.major = element_blank(),panel .grid.m
inor = element_blank())+

theme(panel .spacing.x = unit(0, "lines™))+

theme(strip.text.x = element_text(size=11), strip.tex
t.y = element_text(size=11))

Based on the abundance plot we might assume that bacterial diversity is
higher at the low density colony freshwater beach. This will be properly tested
below.

Alpha diversity

Alpha diversity for each sample was calculated in USEARCH. We calculated
the Jost index which is based on a family of metrics called Hill numbers of
parameter g. g determines how abundance is weighted. These indices are
transformed into the effective number of species. We use g=1, which is
equivalent to Shannon entropy and balances differently abundant OTUs.
There is an argument about whether to rarefy OTU tables to even number of
reads per sample. To test, if uneven read depth affected the calculation of
diversity measures we calculated alpha diversity as described above for the
non-normalised OTU table, and the OTU table rarefied to 10,000 reads per
sample using QIIME (samples with <10,000 reads (P24, P39) were removed
from the latter).
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## Read the table with the alpha-diversity estimates calcul
ated in USEARCH

alpha_div <- read.table(./AFSmicrobiome_SI_alphaDiversity_
Rinput_DatasetS12._txt'", header=T, sep= "\t", row.names=1, n

a.

strings=c("","NA"))

## Test how well the estimates for the non-normalised and r
arefied OTU tables are correlated
cor.test(alpha_div$jostl_all, alpha_div$jostl_raref)

HH#

## Pearson®"s product-moment correlation

HH#

## data: alpha_div$jostl_all and alpha_div$jostl_raref

## t = 280.56, df = 92, p-value < 2.2e-16

## alternative hypothesis: true correlation is not equal to

## 95 percent confidence interval:
## 0.9991195 0.9996128

## sample estimates:

H#Hit cor

## 0.9994161

ggplot(alpha _div, aes(x = jostl all, y=jostl raref)) +

geom_point()+

stat_smooth(method="Im", se=FALSE)+

theme_bw(Q+

ylab("'Effective no. of species (rarefied data)')+
xlab("'Effective no. of species (non-normalised data)'™)+
theme(panel .grid.major = element_blank(), panel.grid.mino
= element_blank())+

annotate("text", x=60, y=100, label= paste("'r==0.99"), pa

rse=TRUE, size=6)

Effective no. of species (rarefied data)

150 -

1004

(%))
o
1

50 100 150
Effective no. of species (non-normalised data)

Figure 4. Comparison of alpha diversity estimates calculated from the non-
normalised and rarefied OTU tables.
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In the next step, we test if there is a difference in alpha-diversity between
beaches and the two age groups. We first have to establish if alpha diversity
has a gaussian distribution

library(gridExtra)
library(ggplot2)
library(dplyr)
library(lme4)

## Check distribution of alpha diversity estimates.
## Effective number of species values can be treaded as a c
ontinuous variable (not a count table anymore)
h <- ggplot(alpha_div, aes(jostl_all)) +
geom_histogram(binwidth=17,Fill="lightgrey', colour
=""gray26') +
theme_bw(Q+
ylab("*Count™)+
xlab('alpha diversity (Jost 1))+
theme(panel .grid.major = element_blank(), panel.gri
d.minor = element_blank())
## -> not normal

## Square root transform data
th <- ggplot(alpha_div, aes(sqrt(jostl_all))) +
geom_histogram(binwidth=1, fill="lightgrey", colour
=""gray26') +
theme_bw(Q+
ylab(""Count'™)+
xlab('alpha-diversity (Jost 1)")+
theme(panel .grid.major = element_blank(), panel.gri
d.minor = element_blank())
## -> square root transformation achieves normality

grid.arrange(h, th, ncol=2)

204

201

Count
Count

40 80 120 180 25 50 75 100 125
alpha diversity (Jost 1) alpha-diversity (Jost 1)

Figure 5. Histgram of untransformed alpha-diversity estimates (left panel) and
square-root transformed alpha-diversity estimates (right panel).

Now we can perform linear mixed models (LMM) and likelihood ratio test to
test for differences in alpha diversity between the groups. We make use of
LMMs to include pair ID as a random effect as we can not consider the two
samples of a mother-pup pair as being truly independent. The two individuals
of the pairs that were determined to be unrelated by parentage analyses are
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assigned different pair IDs.

library(lme4)
library(MuMIn)

## Combine the meta data with the diversity table

meta2.tab <- cbind(meta.tab, SamplelD = row.names(meta.tab)
)

alpha_div2 <- cbind(alpha_div, SamplelD = row.names(alpha_d
iv))

alpha_model .tab <- dplyr::left_join(meta2.tab, alpha_div2,
by = "SamplelD'™)

## In the model below PairlD is used as a random effect to
account for non-independence of a mother-pup pair. Parentag
e analysis revealed five unrelated pairs at SSB. To avoid r
emoving 10 data points from one beach we simply assign diff
erent unique PairlDs to these individuals. Pairs: "M-P49","
M-P46',**M-P15*","*"M-P13","*"M-P11""

## Copy the PairlD column

alpha_model _unrel.tab <- cbind(alpha_model.tab, PairlD2 = a

Ipha_model . tab$PairlD)

## Change the PairlD of the pups by appending a p to the en

d of the 1D

for (i in c('P49","P46","P15","P13","P11™)) {
levels(alpha_model_unrel .tab$PairlD2) <- c(levels(alpha

_model_unrel .tab$PairlD2), pasteO(alpha_model_unrel .tab$P

airlD2[alpha_model_unrel.tab$SamplelD==(i)]1,""p""))
alpha_model_unrel . tab$PairliD2[alpha_model_unrel .tab$Sam

plelD==(i)] <- pasteO(pasteO(alpha_model unrel.tab$PairiD2

[alpha_model_unrel . tab$SamplelD==(i)],"p""))

}

## Test 1T alpha diversity is different between the two bea

ches and between mothers and pups

## jostl = response variable, beach and age = predictors

## PairlD used as a random effect to account for non-indepe
ndence of a pair

modell <- Imer(sqgrt(jostl_all) ~ Beach + Age + (1]|PairiD2),
data=alpha_model_unrel .tab)

## Get the model output

summary(model 1)

## Linear mixed model fit by REML ["ImerMod"]
## Formula: sqrt(jostl_all) ~ Beach + Age + (1 | PairlD2)
HHt Data: alpha_model unrel.tab

H#

## REML criterion at convergence: 392.8

Ht

## Scaled residuals:

H# Min 10 Median 3Q Max

## -2.03922 -0.64774 -0.07021 0.68341 2.30587
##
## Random effects:

## Groups Name Variance Std.Dev.
## PairlD2 (Intercept) 0.9049 0.9513
## Residual 2.7621 1.6619

## Number of obs: 96, groups: PairlD2, 53
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#Hit

## Fixed effects:

HiHt Estimate Std. Error t value
## (Intercept) 8.2820 0.3532 23.446
## BeachSSB -1.6417 0.4311 -3.808
## AgeP -0.1669 0.3437 -0.486
#Hit

## Correlation of Fixed Effects:

H#t (Intr) BchSSB

## BeachSSB -0.625

## AgeP -0.486 0.000

## Examine the residual plot and qgplot for violation of mo
del assumptions

plot(modell)
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## Calculate the coefficient of determination (outputs the
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marginal and conditional R squared)
r .squaredGLMM(model1)

#H# R2m R2c
## 0.1579665 0.3657625

## Perform likelihood ratio tests to obtain p-values

## The REML=FALSE specification iIs necessary for comparing
models using the likelihood ratio test

modelFull <- Imer(sqrt(jostl_all) ~ Beach + Age + (1|PairlD
2), data=alpha_model_unrel.tab, REML=FALSE)

modelAge <- Imer(sgrt(jostl_all) ~ Age + (1|PairlD2), data=
alpha_model_unrel .tab, REML=FALSE)

modelBeach <- Imer(sqrt(jostl_all) ~ Beach + (1]|PairliD2), d
ata=alpha_model_unrel.tab, REML=FALSE)

anova(modelAge ,modelFull)

## Data: alpha_model_unrel.tab

## Models:

## modelAge: sqrt(jostl_all) ~ Age + (1 | PairlD2)

## modelFull: sqrt(jJostl_all) ~ Beach + Age + (1 | PairlD2)
Hit Df AlIC BIC [logLik deviance Chisq Chi D
f Pr(>Chisq)

## modelAge 4 412.61 422.86 -202.30 404.61

## modelFull 5 401.42 414.24 -195.71  391.42 13.185

1 0.0002822 ***

T

## Signif. codes: 0 "**** 0.001 "*** 0.01 "*" 0.05 "." 0.1
“ . g

anova(modelBeach,modelFull)

## Data: alpha_model_unrel.tab

## Models:

## modelBeach: sqrt(jostl_all) ~ Beach + (1 | PairiD2)

## modelFull: sqrt(jostl_all) ~ Beach + Age + (1 | PairlD2)
fizis DF AlC BIC [logLik deviance Chisq Chi
DFf Pr(>Chisq)

## modelBeach 4 399.66 409.92 -195.83 391.66

## modelFull 5 401.42 414.24 -195.71 391.42 0.2393
1 0.6247

## Test 1f alpha diversity is different between female and
male pups

## jostl = response variable, beach and sex = predictors
modell <- Im(sgrt(jJostl_all) ~ Beach + Sex, data=subset(alp
ha_model .tab, Age=="P"))

summary(modell)

HH#
## Call:
## Im(formula = sqrt(jJostl_all) ~ Beach + Sex, data = subse
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t(alpha_model .tab,

#it Age == "P™))

Hit

## Residuals:

H# Min 1Q Median 3Q Max

## -4.8638 -1.5132 0.0624 1.4983 3.5700

Hit

## Coefficients:

H#t Estimate Std. Error t value Pr(c|t])

## (Intercept) 8.3279 0.4697 17.73 <2e-16 ***

## BeachSSB -1.2678 0.5843 -2.17 0.0353 *

## SexM -1.0155 0.5974 -1.70 0.0961 .

HH ——-

## Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1
e

#Hit

## Residual standard error: 2.022 on 45 degrees of freedom
## Multiple R-squared: 0.1498, Adjusted R-squared: 0.112
## F-statistic: 3.963 on 2 and 45 DF, p-value: 0.02599

par(mfrow=c(2,2))
plot(modell)
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We find that estimates of alpha diversity are significantly higher at freshwater
beach compared to special study beach but no significant difference is found
between the age groups.

library(gridExtra)
library(ggplot2)

## Plot alpha diversity distribution for each beach seperat
ed by age (mothers & pups)
beach <- ggplot(alpha _model.tab, aes(x = Beach, y=jostl all
, Fill=Beach)) +

geom_boxplot()+

scale_x_discrete(name=""", labels=c(Freshwater
="FWB", SSB='SSB'))+

scale_fill_manual (name="Beach', values=c(**dod
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gerblue3”,"firebrick2™), labels=c("'FWB", "SSB™))+

theme_bw(Q)+

theme(legend.position=c(0.80,0.87), legend.ti
tle = element_blank())+

ylab(""Effective no. of species (Shannon entro
py)")+

theme(axis.text.x=element_text(size=10, margi
n = unit(c(0.3, 0, 0, 0), "cm')))+

theme(panel .grid.major = element_blank(), pan
el._grid.minor = element_blank())

age <- ggplot(alpha_model.tab, aes(x = Beach, y=jostl_all,
fill=Age)) +

geom_boxplot()+

scale_x_discrete(name=""", labels=c(Freshwater="
FWB™, SSB="'SSB'"))+

theme_bw()+

scale_fill_manual (name="Age", values=c("'bisque4
", "bisquel™), labels=c( M = "Mothers"™, P = "Pups'™))+

theme(legend.position=c(0.80,0.87), legend.titl

e = element_blank(Q))+

theme(axis.text.x=element_text(size=10, margin
= unit(c(0.3, 0, 0, 0), "cm™)))+

theme(axis.title.y = element_blank())+

theme(panel .grid.major = element_blank(), panel
-grid.minor = element_blank())

## Use the pup subset of the data to look for differences i
n sex
model_pups.tab <- subset(alpha_model.tab, Age=="P'")

## Plot alpha diversity distribution for each beach seperat
ed by pup sex
sex <- ggplot(alpha_model.tab, aes(x=Beach, y=jostl_all,fil
1=Sex)) +

geom_boxplot(position=position_dodge())+

theme_bw()+

scale_x_discrete(name=""", labels=c(Freshwater="
FWB*, SSB='""SSB'"))+

scale_Tfill_manual (name="Sex of Pup"™, values=c("
darkorchid3","darkseagreen2™), labels=c( M = "Male", F = "F
emale'™))+

theme(legend.position=c(0.80,0.87), legend.titl
e = element_blank(Q))+

theme(axis.text.x=element_ text(size=10, margin
= unit(c(0.3, 0, 0, 0), "cm™)))+

theme(axis.title.y = element_blank())+

theme(panel .grid.major = element_blank(), panel
.grid.minor = element_blank())

grid.arrange(beach, age, sex, ncol=3)
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Figure 6. Boxplots of alpha diversity estimates for the two breeding colonies -
freshwater beach (FWB), special study beach (SSB) - (left panel), the two age
groups (center panel), and female and male pups (right panel).

A freshwater stream is traversing through freshwater beach which could
contribute to the bacterial diversity at this breeding colony through the input of
environmental bacteria that are not present at special study beach. We thus
want to investigate if alpha diversity is also elevated at freshwater beach
when considering only the four most dominant phyla (Proteobacteria,
Bacteroidetes, Firmicutes, and Actinobacteria).

library(dplyr)
library(lme4)
library(MuMin)

## First make list of OTUs that belong to the 4 main phyla

mainphyla_otus.obj <- subset_ taxa(phylo.obj, Phylum %in% c
("'Proteobacteria’, ""Bacteroidetes”™, "Firmicutes'™, "Actinoba
cteria™))

mainphyla_otus.tab <- otu_table(mainphyla otus.obj)
mainphyla_otus_list <- row.names(mainphyla_otus.tab)

## Alpha diversity for the selected OTUs is calculated in U
search.

## Load resulting alpha diversity table
alpha_div_mainphyla.tab <- read.table(*./AFSmicrobiome_SI_a
IphaDiversity MainPhyla Rinput DatasetS13.txt", header=T, s
ep= "\t", row.names=1, na.strings=c("","NA™))

## Add the rownames as a column called SamplelD
alpha_div_mainphyla_2.tab <- cbind(alpha_div_mainphyla.tab,
SamplelD = row.names(alpha_div_mainphyla.tab))

## Merge the tables with the meta data table
alpha_div_mainphyla_2.tab <- dplyr::left_join(meta2.tab, al
pha_div_mainphyla_2.tab, by = "SamplelD™)

alpha_div_mainphyla_2_unrel.tab <- cbind(alpha_div_mainphyl

a_2.tab, PairlD2 = alpha_div_mainphyla 2.tab$PairlD)

## Change the PairlD of the pups by appending a p to the en

d of the ID

for (i in c(’'P49","P46',"P15","P13","P11"™)) {
levels(alpha_div_mainphyla_2_unrel.tab$PairlD2) <- c(leve

Is(alpha_div_mainphyla_2 unrel.tab$PairiD2), pasteO(alpha

_div_mainphyla_ 2 unrel _tab$PairlID2[alpha_div_mainphyla 2 un

rel _tab$SamplelD==(i)]1.,"p""))
alpha_div_mainphyla_2_unrel.tab$PairlID2[alpha_div_mainphy

la_2 unrel.tab$SamplelD==(i)] <- pasteO(pasteO(alpha_div_m
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ainphyla_2_unrel _tab$PairlD2[alpha_div_mainphyla_2_unrel._ta
b$SamplelD==(i)],"p""))
b

## Test if alpha diversity is different between the two bea
ches and between mothers and pups

## jost = response variable, beach and age = predictors

## PairlD used as a random effect to account for non-indepe
ndence of a pair

mod <- Imer(sqrt(jost) ~ Beach + Age + (1|PairlD2), data=al
pha_div_mainphyla_2_unrel.tab)

## Get the model output

summary(mod)

## Linear mixed model fit by REML ["ImerMod"]
## Formula: sqrt(jost) ~ Beach + Age + (1 | PairlD2)
Hit Data: alpha_div_mainphyla_2_unrel.tab

Hit

## REML criterion at convergence: 365

Hit

## Scaled residuals:

HiHt Min 1Q Median 3Q Max
## -1.9091 -0.6306 -0.1150 0.6814 2.3977
it

## Random effects:
## Groups Name Variance Std.Dev.
## PairlD2 (Intercept) 0.7895 0.8885

## Residual 1.9595 1.3998
## Number of obs: 96, groups: PairlD2, 53
Hit

## Fixed effects:

H# Estimate Std. Error t value
## (Intercept) 7.08871 0.30783 23.028
## BeachSSB -0.91041 0.37851 -2.405
## AgeP 0.07419 0.29011 0.256
Hit

## Correlation of Fixed Effects:

HHt (Intr) BchSSB

## BeachSSB -0.633

## AgeP -0.471 0.000

## Examine the residual plot and ggplot for violation of mo
del assumptions
plot(mod)
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## Calculate the coefficient of determination (outputs the
marginal and conditional R squared)
r .squaredGLMM(mod)

#Ht R2m R2c
## 0.07121833 0.33795176

## Perform likelihood ratio tests to obtain p-values

## The REML=FALSE specification is necessary for comparing

models using the likelihood ratio test

modFull <- Imer(sgrt(jost) ~ Beach + Age + (1]|PairlD2), dat
a=alpha_div_mainphyla_2_unrel.tab, REML=FALSE)

modAge <- Imer(sgrt(jost) ~ Age + (1|PairlD2), data=alpha_d
iv_mainphyla_2_unrel_tab, REML=FALSE)

modBeach <- Imer(sgrt(jost) ~ Beach + (1]|PairiD2), data=alp
ha_div_mainphyla_2 unrel.tab, REML=FALSE)
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anova(modAge, modFull)

## Data: alpha_div_mainphyla_2 unrel.tab

## Models:

## modAge: sqgrt(jost) ~ Age + (1 | PairiD2)

## modFull: sqrt(jost) ~ Beach + Age + (1 | PairlD2)

HHt Df AlC BIC logLik deviance Chisq Chi Df
Pr(>Chisq)

## modAge 4 376.43 386.69 -184.22  368.43

## modFull 5 372.76 385.58 -181.38  362.76 5.6709 1
0.01725 *
S
## Signif. codes: 0 "**** 0.001 "*** 0.01 "*" 0.05 "." 0.1
-

anova(modBeach,modFul I)

## Data: alpha_div_mainphyla_2 unrel.tab

## Models:

## modBeach: sqrt(jost) ~ Beach + (1 | PairliD2)

## modFull: sqrt(jost) ~ Beach + Age + (1 | PairiD2)

H#t Df AlIC BIC [logLik deviance Chisq Chi Df
Pr(>Chisq)

## modBeach 4 370.83 381.08 -181.41  362.83

## modFull 5 372.76 385.58 -181.38 362.76 0.0672 1
0.7955

library(ggplot2)
## Plot alpha diversity only for the two breeding colonies

ggplot(alpha_div_mainphyla_2 unrel.tab, aes(x = Beach, y=jo
st, fill=Beach)) +

geom_boxplot()+

scale_x_discrete(name=""", labels=c(Freshwater="FWB", SSB=
""SSB'™))+

scale_fill_manual (name="Beach', values=c("'dodgerblue3","f
irebrick2™), labels=c("'FWB"™, "'SSB'"))+

theme_bw(Q+

theme(legend.position="none")+

ylab("'Effective no. of species')+

theme(axis.text.x=element_text(size=14, margin = unit(c(0
.2, 0, 0, 0), "cmM)),axis.text.y=element_text(size=14, marg
in = unit(c(0, 0.1, 0, 0.3), "cm™)), axis.title=element_tex
t(size=14))+

theme(panel .grid.major = element_blank(), panel._grid.mino
r = element_blank())
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Figure 7. Boxplot of alpha diversity estimates for the two breeding colonies -
freshwater beach (FWB), special study beach (SSB) based on the four dominant
phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria.

Alpha diversity remains significantly higher at freshwater beach when
considering only OTUs from the four most dominant phyla.

Beta diversity

To assess the difference in bacterial composition among samples (beta
diversity) we calculated Bray-Curtis and weighted UniFrac
dissimilarity/distance matrices for normalised and non-normalised OTU
tables. To normalise the counts we performed cumulative sum scaling (CSS)
with the metagenome-Seq package. UniFrac distance calculations require a
phylogenetic tree. The tree was calculated with an outgroup using Pynast in
QIIME v.1.9.1. The tree was rooted with an archaeal sequence as outgroup
and the outgroup removed before calculation of the weighted UniFrac
distance.

library(ape)

## Calculate beta diversity and differential OTU abundance
for the two beaches and mother and pup groups

## 1. non-normalised OTU table -> Bray-Curtis and weighted
UniFrac

## For wUniFrac distance calculation a phylogeneic tree is
needed. The tree was calculated with an outgroup using pyna
st in QIIME

## Import phylogeny (pynast with outgroup)

tree_py out.file <- read.tree(file="./AFSmicrobiome_SI_outg
roup_pynastAligned_filtered_Rinput_DatasetS14._tre')

## Root tree and trim outgroup from tree (label: U11044 V3V
4)

# tree_py_out.file$tip.label # For checking tip labels

## Root tree at outgroup

pytree_rooted.file <- root(tree_py out.file, outgroup="U110
44 V3V4'"™ ,resolve.root = TRUE)
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## Remove outgroup
pynast.tre <- drop.tip(pytree_rooted.file, "'U11044 V3v4'™)

## Add a column to the meta data table that combines the be
ach and age variables for easier plotting of groups
meta.tab$BeachAge <- paste(meta.tab$Beach,meta.tab$Age)
meta.tab$SampleNames <- rownames(meta.tab)

## Combine all files into a phyloseq object

otu.obj <- otu_table(otu.tab, taxa are rows = TRUE)
tax.obj <- tax_table(tax.tab)

meta.obj <- sample_data(meta.tab)

## Make a phyloseq object and add tree file
phylo.obj <- phyloseq(otu.obj, tax.obj, meta.obj)
phylo.obj <- merge_phyloseq(phylo.obj,pynast.tre)

First, we calculate the Bray-Curtis and weighted UniFrac distances for the
non-normalised OTU table and visualise them with principal coordinate
analysis (PCoA).

## Calulate PCoA for non-normalised OTU table with Bray-Cur
tis.

afs_pcoa_bray <- ordinate(physeq = phylo.obj, method = "PCo
A", distance = "bray")

## Plot PCoA
b <- plot_ordination(physeq = phylo.obj, ordination = afs_p
coa_bray, color = "BeachAge', shape = "'BeachAge'™) +
geom_point(size = 3.5) +
scale_color_manual (values = c("'dodgerblue3™,"dodg
erblue3”,"firebrick2","firebrick2™),name=""",breaks=c("'Fresh
water M, "Freshwater P, "SSB M", '"'SSB P'), labels=c("'FWB
mothers","FWB pups', ''SSB mothers'™, '"SSB pups'))+
scale_shape_manual (values = c¢(19,1,15,0),name=""",
breaks=c(*"'Freshwater M", "Freshwater P', "SSB M", *"SSB P'),
labels=c("'FWB mothers","FWB pups', ''SSB mothers', 'SSB pup
s+
theme_bw()+
ggtitle(''non-normalised Bray-Curtis')+
theme(legend.position=""none")+
theme(legend.background = element_rect(size=0.3,1
inetype="'solid"”, colour ="black™))+
theme(panel.grid.major = element_blank(),panel.gr
id.minor = element_blank())
## The plot above plots the points twice. To remove the sec
ond layer do:
b$layers <- b$layers[-1]

## Calulate PCoA for non-normalised OTU table with weighted
Unifrac.

afs_pcoa_uni <- ordinate(physeq = phylo.obj, method = "PCoA
", distance = "wunifrac')

## Plot PCoA
u <- plot_ordination(physeq = phylo.obj, ordination = afs_p
coa_uni, color = "BeachAge"™, shape = "BeachAge™) +
geom_point(size = 3.5) +
scale_color_manual (values = c("'dodgerblue3™,"dodg
erblue3”,"firebrick2","firebrick2™),name=""",breaks=c(*'Fresh
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water M, "Freshwater P, "SSB M", '"'SSB P'), labels=c("FWB
mothers",""FWB pups'™, ''SSB mothers', "SSB pups'))+

scale_shape_manual (values = c¢(19,1,15,0),name=""",
breaks=c(*"'Freshwater M, "Freshwater P, "SSB M", *"SSB P'™),

labels=c("'FWB mothers","FWB pups', ''SSB mothers', '"'SSB pup

s+

theme_bw(Q+

ggtitle("'non-normalised weighted UniFrac'™)+

theme(legend.position=c(0.83,0.19), legend.title
= element_blank())+

theme(legend.background = element_rect(size=0.3,1
inetype="'solid"”, colour ="black'™))+

theme(panel.grid.major = element_blank(),panel.gr
id.minor = element_blank())
us$layers <- u$layers[-1]

grid.arrange(b, u, ncol=2)

non-normalised Bray-Curtis non-normalised weighted UniFrac
o]
n oo © 01 [ LN e @ © ©
_— e O ° o© &, e =
] ) G; [}
02 . L o o o o m] Iﬁ
O [ ]
] % o® °0° “ L " u]
o ° 1@ O g O of 5
g o C g ° 3 °® o 0 O
2 |m 2 © A o
2 o ] ®e L [Ehat =
o 0.0 o o O o} 9 : e m o=
P " o e, ¢ me DO
H = ° ® zo
| | 8 o) o
u
m} ° ]
é] Oe n @ FWB mathers
le) ® O FWB pups
| |
o2 L] .EID % 02 o B SSB mothers
o .O (o] n [ sSB pups
s U [
0.2 0.0 0.2 0.4 -0.2 <0.1 0.0 0.1
Axis.1 [25.4%] Axis.1 [32.8%]

Figure 8. Principal coordinate analysis (PCoA) based on Bray-Curtis dissimliarities
(left panel) and weighted UniFrac distances (right panel) calculated from the non-
normalised OTU table.

Prepare an OTU table normalised with cumulative sum scaling (CSS) using
the metagenomeSeq package and following the MetagenomeSeq vignette.

library("'metagenomeSeq')

## Convert the phyloseq object to a metagenomeSeq object (M
Rexperiment) .

## The Phyloseq_to_metagenomeSeq function is included in th
e phyloseq package.

metagenome.obj <- phyloseq_to_metagenomeSeq(phylo.obj)

## Calculate the proper percentile by which to normalize co
unts

cNstat <- metagenomeSeq: :cumNormStatFast(metagenome.obj)

# cNstat #0.5

## Normalise counts

metagenome.obj <- metagenomeSeq::cumNorm(metagenome.obj, p

= cNstat)

## Export the normalised count table

metag.norm.counts <- metagenomeSeq: :MRcounts(metagenome.obj
, horm = TRUE)

## Add a pseudocount of 0.0001 to the table and log transfo
rm

metag.norm.counts_log <- log(metag.norm.counts+0.0001)
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## Substract the value from log of pseudocount to preserve
zeros of the original counts
metag.norm.counts_log2 <- metag.norm.counts_log-(log(0.0001

)]

## Make a new phyloseq object with with the new OTU table
otu_normMG.obj <- otu_table(metag.norm.counts_log2, taxa_ar
e_rows = TRUE)

phylo_normMG.obj <- phyloseq(otu_normMG.obj, tax.obj, meta.
obj)

phylo_normMG.obj <- merge_phyloseq(phylo_normMG.obj, pynast
.tre)

Now we can calculate the Bray-Curtis and weighted UniFrac distances for the
CSS normalised OTU table.

library(gridExtra)
library(ggplot2)

## Calulate PCoA for CSS normalised OTU table with Bray-Cu
rtis.

afs_pcoa_css_bray <- ordinate(physeq = phylo_normMG.obj, me
thod = "PCoA", distance = "bray')

## Plot PCoA
b <- plot_ordination(physeq = phylo_normMG.obj, ordination
= afs_pcoa_css_bray, color = "BeachAge'", shape = "BeachAge"
) +

geom_point(size = 3.5) +

scale_color_manual (values = c("'dodgerblue3™,"dodg
erblue3","firebrick2","firebrick2"™),name=""",breaks=c(*'Fresh
water M, "Freshwater P, "SSB M", '"'SSB P'), labels=c("FWB
mothers","FWB pups', ''SSB mothers'™, '"SSB pups'))+

scale_shape_manual (values = c¢(19,1,15,0),name=""",
breaks=c(*"'Freshwater M", "Freshwater P, "SSB M", *"SSB P'™),

labels=c("'FWB mothers","FWB pups'™, ''SSB mothers', 'SSB pup

s+

theme_bw()+

ggtitle(’'CSS normalised Bray-Curtis')+

theme(legend.position=c(0.17,0.80), legend.title
= element_blank())+

theme(legend.background = element_rect(size=0.3,1
inetype="solid"”, colour ="black™))+

theme(panel .grid.major = element_blank(), panel.g
rid.minor = element_blank())
b$layers <- b$layers[-1]

## Calulate PCoA for CSS normalised OTU table with weighte
d Unifrac.

afs_pcoa_css_uni <- ordinate(physeq = phylo_normMG.obj, met
hod = "PCoA"™, distance = "wunifrac'™)

## Plot PCoA
u <- plot_ordination(physeq = phylo_normMG.obj, ordination
= afs_pcoa_css_uni, color = "BeachAge'", shape = ""BeachAge')
+

geom_point(size = 3.5) +

scale_color_manual (values = c("'dodgerblue3™,"dodg
erblue3","firebrick2","firebrick2"™),name=""",breaks=c(*'Fresh
water M, "Freshwater P, "SSB M"™, "'SSB P'™), labels=c("'FWB
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mothers","FWB pups', ''SSB mothers'™, '"SSB pups'))+
scale_shape_manual (values = ¢(19,1,15,0), name="""
, breaks=c(''Freshwater M", "Freshwater P", '"'SSB M, ''SSB P"
), labels=c("'FWB mothers","FWB pups', "'SSB mothers™, "'SSB p
ups™))+
theme_bw(Q)+
gogtitle("'CSS normalised weighted UniFrac')+
theme(legend.position=""none")+
theme(legend.background = element_rect(size=0.3,1
inetype="'solid"”, colour ="black™))+
theme(panel .grid.major = element_blank(), panel.g
rid.minor = element_blank())
u$layers <- u$layers[-1]

grid.arrange(b, u, ncol=2)
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Figure 9. Principal coordinate analysis (PCoA) based on Bray-Curtis dissimliarity
(left panel) and weighted UniFrac distance (right panel) calculated from the CSS
normalised OTU table.

To visually examine the similarity between mothers and their pups we can
use different colour and shapes for each pair.

library(RColorBrewer)
library(gridExtra)
library(ggplot2)

## Make plot with different colours and shapes for the pair
s
## Plot PCoA
u <- plot_ordination(physeq = phylo_normMG.obj, ordination
= afs_pcoa_css_uni, color = "BeachAge', shape = "‘BeachAge')
+
geom_point(size = 3.5) +
scale_color_manual (values = c(*'dodgerblue3", " dodger
blue3"”,"firebrick2","firebrick2™),name="",breaks=c("'Freshwa
ter M", "Freshwater P, "'SSB M', "SSB P"), labels=c("'FWB mo
thers™,"FWB pups', '""SSB mothers'™, "SSB pups'))+
scale_shape_manual (values = c¢(19,1,15,0), name=""",
breaks=c(*"'Freshwater M", "Freshwater P, "SSB M", *"SSB P'™),
labels=c("'FWB mothers","FWB pups"™, ''SSB mothers', 'SSB pup
s+
theme_bw(Q)+
ggtitle("'CSS normalised weighted UniFrac')+
theme(legend.position=""none")+
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theme(legend.position=c(0.84,0.18), legend.title =
element_blank())+

theme(legend.background = element_rect(size=0.3,1in
etype="solid", colour ="black"))+

theme(panel .grid.major = element_blank(), panel.gri
d.minor = element_blank())
u$layers <- u$layers[-1]

## Define colours and shapes for the pairs

# brewer.pal(8,"Setl"™)

colorPairs=rep(c("'#E41A1C", "#377EB8', "#4DAF4A™, "#984EA3"
, "darkgray" ,"gold" ,"#A65628", "#F781BF"),6)
shapePairs=c(0,0,0,0,1,1,1,1,2,2,2,2,5,5,5,5,3,3,3,3,4,4,4,
4,6,6,6,6,8,8,8,8,15,15,15,15,16,16,16,16,17,17,17,17,18,18
,18,18)

X <- plot_ordination(physeq = phylo_normMG.obj, ordination
= afs_pcoa_css_uni, color = "PairlD", shape = "PairiD"™) +

geom_point(size=3.5, stroke=1) +

scale_color_manual (values = colorPairs,name=""",br
eaks=sample_data(phylo_normMG.obj)$PairilD, labels=sample_da
ta(phylo_normMG.obj)$PairlID)+

scale_shape _manual (values = shapePairs,name=""",br
eaks=sample_data(phylo_normMG.obj)$PairlD, labels=sample_da
ta(phylo_normMG.obj)$PairlID)+

theme_bw(Q)+

theme(legend.position=""none")+

ggtitle('CSS normalised weighted UniFrac pairs'™)+

theme(panel .grid.major = element_blank(), panel.g
rid.minor = element_blank())
x$layers <- x$layers[-1]

grid.arrange(u,x,ncol=2)
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Figure 10. Principal coordinate analysis (PCoA) plots based on weighted UniFrac
distance calculated from the CSS normalised OTU table. In the right panel the two
individuals of a mother-pup pair are labelled with the same symbol and colour.

We can also visualise the differences in Bray-Curtis and weighted UniFrac
distances within and among breeding colonies, age groups and mother-pup
pairs using boxplots.

library(phyloseq)
library(reshape2)
library(gridExtra)
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library(ggplot2)

## Calculate distance matrices

unifracDist <- phyloseq::distance(phylo_normMG.obj, method
= "wunifrac™)

brayDist <- phyloseq::distance(phylo_normMG.obj, method =
bray')

## Convert dist element into a matrix

mx_unifrac <- as.matrix(unifracDist)

mx_bray <- as.matrix(brayDist)

## Convert from pairwise matrix to pairwise table
df_unifrac <- subset(melt(mx_unifrac), value!=0)

df bray <- subset(melt(mx_bray), value!=0)

## Use data frame that contains information about the unrel
ated pairs
alpha_model _unrel_2.tab <- alpha_model _unrel.tab

## Collect meta data. Two data frames are needed to match t
he two samples in each row

df_meta <- subset(alpha_model_unrel_2._tab, select=c(''Beach"
, "Age'", "PairlD2", "SamplelD™))

df_meta2 <- subset(alpha_model_unrel_2.tab, select=c(''Beach
","Age'", "PairlD2", "SamplelD™))

## Rename columns

colnames(df_meta) <- c(''Beach', "Age', "PairlD2_1","Varl')

colnames(df_meta2) <- c(''Beach2","Age2", "PairlD2_2", "Var2
)

## Join the data frames

df_unifrac_meta <- dplyr::left_join(df_unifrac, df _meta, by
="Varl")

df_unifrac_meta <- dplyr::left_join(df_unifrac_meta, df_met
a2, by="var2"™)

df_bray meta <- dplyr::left_join(df_bray, df meta, by="Varl
)

df_bray meta <- dplyr::left_join(df_bray meta, df meta2, by
="Var2")

## Add columns indicating if the individuals from the same
breeding colony, age group or the same pair

df_unifrac_meta <- cbind(df_unifrac_meta,BeachMatch = as.f
actor(ifelse(df_unifrac_meta$Beach==df_unifrac_meta$Beach2,
0.1)))

df_unifrac_meta <- cbind(df _unifrac_meta,AgeMatch = as.fac
tor(ifelse(df_unifrac_meta$Age==df_unifrac_meta$Age2,0,1)))
df_unifrac_meta <- cbind(df _unifrac_meta,PairMatch = as.fa
ctor(ifelse(df_unifrac_meta$PairlD2_l==df unifrac_meta$Pair
1D2_2,0,1)))

df_bray meta <- cbind(df_bray_meta,BeachMatch = as.factor(
ifelse(df_bray_meta$Beach==df_bray_meta$Beach2,0,1)))
df_bray meta <- cbind(df_bray meta,AgeMatch = as.factor(if
else(df_bray_meta$Age==df_bray meta$Age2,0,1)))

df _bray meta <- cbind(df_bray meta,PairMatch = as.factor(i
felse(df_bray meta$PairlD2_1==df _bray meta$PairlD2_2,0,1)))

## Draw plot
BeachUni <- ggplot(data = df_unifrac_meta, aes(x=BeachMatch
, y=value)) +
geom_boxplot(Fill="lightgray')+
theme_bw(Q+
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scale_x_discrete(name=""", labels=c("'0"
="within", 1" ="among'))+

ylab('weighted UniFrac')+

theme(axis.text.x=element_text(size=12,

margin = unit(c(0.3, 0, 0, 0), "cm'™)),axis.text.y=element_

text(size=12), axis.title.x=element_text(size=14),axis.titl
e.y=element_text(size=14))+

theme(panel .grid.major = element_blank(
), panel.grid.minor = element_blank())

AgeUni <- ggplot(data = df_unifrac_meta, aes(x=AgeMatch, y=
value)) +
geom_boxplot(Fill="lightgray')+
theme_bw()+
scale_x_discrete(name=""", labels=c('0"
="within, 1" ="among'))+
ylab(""")+
theme(axis.text.x=element_text(size=12,
margin = unit(c(0.3, 0, 0, 0), "cm")),axis.text.y=element_
text(size=12), axis.title_x=element_text(size=14),axis.titl
e.y=element_text(size=14))+
theme(panel .grid.-major = element_blank(
), panel_grid.minor = element_blank())
PairUni <- ggplot(data = df_unifrac_meta, aes(x=PairMatch,
y=value)) +
geom_boxplot(Fill="lightgray')+
theme_bw()+
scale_x_discrete(name=""", labels=c('0"
="pairs', "1" ="unrelated™))+
ylab(""")+
theme(axis.text.x=element_text(size=12,
margin = unit(c(0.3, 0, 0, 0), "cm™)),axis.text.y=element_
text(size=12), axis.title.x=element_ text(size=14),axis.titl
e.y=element_text(size=14))+
theme(panel .grid.major = element_blank(
), panel._grid.minor = element_blank())
BeachBray <- ggplot(data = df _bray meta, aes(x=BeachMatch,
y=value)) +
geom_boxplot(Fill="lightgray')+
theme_bw()+
scale_x_discrete(nhame="breeding colonie
s", labels=c('0" ="within", "1" ="among'))+
ylab(*'Bray-Curtis')+
theme(axis.text.x=element_text(size=12,
margin = unit(c(0.3, 0, 0, 0), "cm'™)),axis.text.y=element_
text(size=12), axis.title.x=element_text(size=14),axis.titl
e.y=element_text(size=14))+
theme(panel .grid.major = element_blank(
), panel._grid.minor = element_blank())

AgeBray <- ggplot(data = df _bray_meta, aes(x=AgeMatch, y=va
lue)) +

geom_boxplot(Fill="lightgray)+

theme_bw()+

scale_x_discrete(name=""age groups', lab
els=c('0" ="within, 1" ="among"))+

ylab("""")+

theme(axis.text.x=element_text(size=12,
margin = unit(c(0.3, 0, 0, 0), "cm")),axis.text.y=element_
text(size=12), axis.title_x=element_text(size=14),axis.titl
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e.y=element_text(size=14))+

theme(panel .grid.major = element_blank(
), panel.grid.minor = element_blank())
PairBray <- ggplot(data = df_bray meta, aes(x=PairMatch, y=
value)) +

geom_boxplot(Fill="lightgray')+

theme_bw(Q+

scale_x_discrete(name=""", labels=c('0"
="pairs', "1" ="unrelated'))+

ylab(""")+

theme(axis.text.x=element_text(size=12,

margin = unit(c(0.3, 0, 0, 0), "cm")),axis.text.y=element_

text(size=12), axis.title.x=element_text(size=14),axis.titl
e.y=element_text(size=14))+

theme(panel .grid.major = element_blank(
), panel.grid.minor = element_blank())

grid.arrange(BeachuUni ,AgeUni ,PairUni ,BeachBray,AgeBray,Pair
Bray, nrow=2, ncol=3)
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Figure 11. Weighted UniFrac and Bray-Curtis distances within and among
breeding colonies, age groups and mother-pup pairs.

ANOSIM — Analysis of similarities

Analysis of similarities can be used to test for similarity/dissimilarity of
bacterial communities between the breeding colonies, age groups, and
mother-pup pair groups. As input we use the CSS normalised OTU table from
above.

Testing for differences in microbial composition between the two breeding
sites, overall and separately for mothers and pups.

library(phyloseq)
library(vegan)
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## Vegan®"s anosim takes a matrix as input with columns repr
esenting OTUs and rows representing samples.

## The OTU table can be transposed and exported from the ph
yloseq object as follows:

0TU1 <- as(otu_table(phylo_normMG.obj), "matrix')

## transpose if necessary
if(taxa_are_rows(phylo_normMG.obj)){0TUl <- t(0TU1l)}

## Coerce to data.frame

otu_table.tab <- as.data.frame(OTUl)

## Extract the meta data from the phyloseq object
meta_data.tab <- as(sample_data(phylo_normMG.obj), "data.fr
ame')

## Perform ANOSIM to test for dissimilarity between beaches
X <- vegan::anosim(dat = otu_table.tab, grouping = meta_dat
a.tab$Beach, distance = "bray', permutations = 10000)
summary (x)

Hit

## Call:

## vegan::anosim(dat = otu_table.tab, grouping = meta_data.
tab$Beach, permutations = 10000, distance = "bray')
## Dissimilarity: bray

Ht

## ANOSIM statistic R: 0.8765

Hit Significance: 9.999e-05

Hit

## Permutation: free

## Number of permutations: 10000

Hit

## Upper quantiles of permutations (null model):

Hit 90% 95% 97.5% 99%

## 0.0175 0.0290 0.0414 0.0574

#Hit

## Dissimilarity ranks between and within classes:

Hit 0% 25% 50% 75% 100% N

## Between 1277 2661.50 3337.5 3937.25 4560 2304
## Freshwater 1 282.75 575.5 1056.25 4339 1128
## SSB 296 1165.00 1641.0 2126.25 4190 1128

# ANOSIM statistic R: 0.8765
# Significance: 9.999e-05

## Perform ANOSIM to test for dissimilarity between mother

groups of the two beaches

X <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Age ==
“M™, ], grouping = meta data.tab[meta_data.tab$Age == "M",
J$Beach, distance = "bray', permutations = 10000)

summary (x)

Hit

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Age == "
M, 1, grouping = meta_data.tab[meta_data.tab$Age == "
M™, J$Beach, permutations = 10000, distance = "bray')

## Dissimilarity: bray
Hit



Analysis of the Antarctic Fur Seal Skin Microbiome

## ANOSIM statistic R: 0.946

H#t Significance: 9.999e-05

Hit

## Permutation: free

## Number of permutations: 10000

Hit

## Upper quantiles of permutations (null model):
Hit 90% 95% 97.5% 99%

## 0.0373 0.0622 0.0875 0.1198

HH#t
## Dissimilarity ranks between and within classes:
#Ht 0% 25%  50% 75% 100% N

## Between 365 680.75 836.5 984.25 1128 576
## Freshwater 1 69.75 138.5 252.00 735 276
## SSB 140 284.75 393.5 494.25 968 276

# ANOSIM statistic R: 0.946
# Significance: 9.999e-05

## Perform ANOSIM to test for dissimilarity between pup gro
ups of the two beaches
X <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Age ==

"P", ], grouping = meta data.tab[meta_data.tab$Age == "P",
J$Beach, distance = "bray', permutations = 10000)
summary (x)
H#
## Call:
## vegan::anosim(dat = otu_table.tab[meta_data.tab$Age == "
P, 1, grouping = meta_data.tab[meta data.tab$Age == "
P, J$Beach, permutations = 10000, distance = "bray')
## Dissimilarity: bray
Hit
## ANOSIM statistic R: 0.8076
Hit Significance: 9.999e-05
H#

## Permutation: free

## Number of permutations: 10000

Hit

## Upper quantiles of permutations (null model):
Hit 90% 95% 97.5% 99%

## 0.0324 0.0561 0.0759 0.1088

HH#
## Dissimilarity ranks between and within classes:
#Ht 0% 25%  50% 75% 100% N

## Between 318 639.75 806.5 959.25 1128 576
## Freshwater 1 69.75 141.5 253.25 1080 276
## SSB 93 287.50 413.5 550.25 1051 276

# ANOSIM statistic R: 0.8076
# Significance: 9.999e-05

Testing for differences in microbial composition between the two age groups,
overall and separately for each beach.

library(vegan)

## Perform ANOSIM to test for dissimilarity between age gro
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ups (mothers and pups)

X <- vegan::anosim(dat = otu_table.tab, grouping = meta_dat
a.tab$Age, distance = "bray', permutations = 10000)

summary (x)

Hit

## Call:

## vegan::anosim(dat = otu_table.tab, grouping = meta_data.
tab$Age, permutations = 10000, distance = "bray')

## Dissimilarity: bray

Hit

## ANOSIM statistic R: 0.006069

Hit Significance: 0.21588

H#

## Permutation: free

## Number of permutations: 10000

Hit

## Upper quantiles of permutations (null model):
#Ht 90% 95% 97.5% 99%

## 0.0178 0.0293 0.0411 0.0577

#it

## Dissimilarity ranks between and within classes:
Hit 0% 25%  50% 75% 100% N

## Between 2 1166.25 2286 3377.0 4559 2304

#H# M 1 1124.75 2230 3590.0 4560 1128

##t P 6 1109.25 2309 3331.5 4540 1128

# ANOSIM statistic R: 0.006069
# Significance: 0.20998

## Perform ANOSIM to test for dissimilarity between age gro
ups at Freshwater beach only

X <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach
== "Freshwater"™, ], grouping = meta_data.tab[meta_data.tab$
Beach == "Freshwater",]$Age, distance = "bray', permutation
s = 10000)

summary (x)

H#

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach ==
"Freshwater", 1., grouping = meta_data.tab[meta_data.t

ab$Beach == "Freshwater", J$Age, permutations = 10000,
distance = "bray")

## Dissimilarity: bray

Hit

## ANOSIM statistic R: 0.08401

H#t Significance: 0.0039996

Hit

## Permutation: free

## Number of permutations: 10000

Hit

## Upper quantiles of permutations (null model):

Hit 90% 95% 97.5% 99%

## 0.0259 0.0374 0.0498 0.0647

Hit

## Dissimilarity ranks between and within classes:

Hit 0% 25% 50% 75% 100% N
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## Between 2 318.50 602.5 861.50 1128 576
## M 1 282.00 558.5 827.25 1081 276
#i# P 6 226.75 489.0 815.00 1127 276

# ANOSIM statistic R: 0.08401
# Significance: 0.0045995

## Perform ANOSIM to test for dissimilarity between age gro
ups at Special study beach only

X <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach
== "SSB"™, ], grouping = meta_data.tab[meta_data.tab$Beach =
= "SSB",]$Age, distance = "bray', permutations = 10000)
summary (x)

H#

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach ==
“"SSB*, 1. grouping = meta_data.tab[meta_data.tab$Beac
h == "SSB", J$Age, permutations = 10000, distance = "b
ray')

## Dissimilarity: bray

#Hit

## ANOSIM statistic R: 0.08145

H#t Significance: 0.0015998

Hit

## Permutation: free

## Number of permutations: 10000

Ht

## Upper quantiles of permutations (null model):
Hit 90% 95% 97.5% 99%

## 0.0249 0.0352 0.0445 0.0581

Hit

## Dissimilarity ranks between and within classes:
HH 0% 25% 50% 75% 100% N

## Between 3 315.75 603.5 871.75 1127 576

## M 12 257.50 490.5 733.50 1126 276

#t P 1 258.25 596.5 886.25 1128 276

# ANOSIM statistic R: 0.08145
# Significance: 0.0014999

Testing for differences in microbial composition between the two sexes (only
for pups), overall and separately for each beach.

library(vegan)

## Make data frames with pup information only
otu_pups.tab <- otu_table.tab[meta_data.tab$Age == "P", ]
meta_pups.tab <- meta_data.tab[meta_data.tab$Age == "P", ]

## Perform ANOSIM to test for dissimilarity between male an
d female pups

X <- vegan::anosim(dat = otu_pups.tab, grouping = meta_pups
_tab$Sex, distance = "bray", permutations = 10000)

summary (x)

Hit
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## Call:

## vegan::anosim(dat = otu_pups.tab, grouping = meta_pups.t
ab$Sex, permutations = 10000, distance = "bray')

## Dissimilarity: bray

Hit

## ANOSIM statistic R: -0.007055

HHt Significance: 0.50145

Hit

## Permutation: free

## Number of permutations: 10000

H#

## Upper quantiles of permutations (null model):
Hit 90% 95% 97.5% 99%

## 0.0500 0.0741 0.0998 0.1302

Hit

## Dissimilarity ranks between and within classes:
Hit 0% 25% 50% 75% 100% N

## Between 2 284.00 579.0 842.50 1128 551

## F 1 269.25 554.5 856.75 1127 406

## M 29 305.00 585.0 848.00 1117 171

# ANOSIM statistic R: -0.007055
# Significance: 0.50545

## Perform ANOSIM to test for dissimilarity between sexes a
t Freshwater beach only

X <- vegan::anosim(dat = otu_pups.tab[meta_pups.tab$Beach =
= "Freshwater', ], grouping = meta_pups.tab[meta_pups.tab$B

each == "Freshwater",]$Sex, distance = "bray', permutations
= 10000)

summary (x)

Hit

## Call:

## vegan::anosim(dat = otu_pups.tab[meta_pups.tab$Beach ==
"Freshwater", 1., grouping = meta_pups.tab[meta_pups.ta
b$Beach == "Freshwater", 1$Sex, permutations = 10000,
distance = "bray')

## Dissimilarity: bray

Hit

## ANOSIM statistic R: 0.1165

Hit Significance: 0.10099

H#

## Permutation: free

## Number of permutations: 10000

Hit

## Upper quantiles of permutations (null model):
##  90%  95% 97.5%  99%

## 0.117 0.161 0.203 0.258

#it

## Dissimilarity ranks between and within classes:
Hit 0% 25% 50% 75% 100% N

## Between 2 86.00 148 211.50 270 135

## F 1 43.00 102 197.00 276 105

## M 29 137.75 172 214.25 248 36

# ANOSIM statistic R: 0.1165
# Significance: 0.092991
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## Perform ANOSIM to test for dissimilarity between sexes a

t Special study beach only

X <- vegan::anosim(dat = otu_pups.tab[meta_pups.tab$Beach =

= "SSB"™, ], grouping = meta_pups.tab[meta pups.tab$Beach ==
"SSB™,]1$Sex, distance = "bray", permutations = 10000)

summary (x)

Hit

## Call:

## vegan::anosim(dat = otu_pups.tab[meta_pups.tab$Beach ==
"'SSB™, 1. grouping = meta_pups.tab[meta_pups.tab$Beach
== ""SSB", 1$Sex, permutations = 10000, distance = "br
ay™)

## Dissimilarity: bray

Hit

## ANOSIM statistic R: -0.04223

Hit Significance: 0.71183

H#

## Permutation: free

## Number of permutations: 10000

Hit

## Upper quantiles of permutations (null model):
#it 90% 95% 97.5% 99%

## 0.0851 0.1166 0.1484 0.1896

HH#

## Dissimilarity ranks between and within classes:
#Hit 0% 25%  50% 75% 100% N

## Between 1 67.75 137.5 203.25 276 140

##t F 3 83.00 170.0 215.00 275 91

## M 9 65.00 103.0 138.00 271 45

# ANOSIM statistic R: -0.04223
# Significance: 0.72273

Testing for differences in microbial composition between different mother-pup
pairs, overall and separately for each beach.

library(vegan)

## Perform ANOSIM to test for dissimilarity between differe
nt mother pup pair groups

X <- vegan::anosim(dat = otu_table.tab, grouping =meta_data
-tabs$PairlD, distance = "bray", permutations = 10000)

summary (x)

Hit

## Call:

## vegan::anosim(dat = otu_table.tab, grouping = meta_data.
tab$PairlD, permutations = 10000, distance = "bray')
## Dissimilarity: bray

Hit

## ANOSIM statistic R: 0.6145

Hit Significance: 9.999e-05

H#

## Permutation: free
## Number of permutations: 10000
HH#
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## Upper quantiles of permutations (null model):
#it 90% 95% 97.5% 99%
## 0.0909 0.1174 0.1380 0.1660

H#
## Dissimilarity ranks between and within classes:
H# 0% 25% 50% 75% 100% N

## Between 1 1163.75 2300.5 3431.25 4560 4512
## Pairl 416 416.00 416.0 416.00 416
## PairlO 23 23.00 23.0 23.00 23
## Pairll 2385 2385.00 2385.0 2385.00 2385
## Pairl2 174 174.00 174.0 174.00 174
## Pairl3d 1738 1738.00 1738.0 1738.00 1738
## Pairl4 338 338.00 338.0 338.00 338
## Pairl5 823 823.00 823.0 823.00 823
## Pairlé 286 286.00 286.0 286.00 286
## Pairl7 1268 1268.00 1268.0 1268.00 1268
## Pairl8 767 767.00 767.0 767.00 767
## Pairl9 45 45.00 45.0 45.00 45
## Palr2 198 198.00 198.0 198.00 198
## Pair20 751 751.00 751.0 751.00 751
## Pair2l 862 862.00 862.0 862.00 862
## Pair22 1232 1232.00 1232.0 1232.00 1232
## Pair23 795 795.00 795.0 795.00 795
## Pair24 3983 3983.00 3983.0 3983.00 3983
## Pair25 704 704.00 704.0 704.00 704
## Pair26 218 218.00 218.0 218.00 218
## Pair27 53 53.00 53.0 53.00 53
## Pair28 434 434.00 434.0 434.00 434
## Pair29 403 403.00 403.0 403.00 403
## Palr3 8 8.00 8.0 8.00 8
## Pair30 1123 1123.00 1123.0 1123.00 1123
## Pair3l 953 953.00 953.0 953.00 953
## Pair32 219 219.00 219.0 219.00 219
## Pair33 660 660.00 660.0 660.00 660
## Pair34 121 121.00 121.0 121.00 121
## Pair35 276 276.00 276.0 276.00 276
## Pair37 837 837.00 837.0 837.00 837
## Pair38 1103 1103.00 1103.0 1103.00 1103
## Pair39 2404 2404.00 2404.0 2404.00 2404
## Pair4 108 108.00 108.0 108.00 108
## Pair40 1507 1507.00 1507.0 1507.00 1507
## Pair4l 784 784.00 784.0 784.00 784
## Pair42 1518 1518.00 1518.0 1518.00 1518
## Pair43 3255 3255.00 3255.0 3255.00 3255
## Pair44 1321 1321.00 1321.0 1321.00 1321
## Paird5 450 450.00 450.0 450.00 450
## Pair4d6 1094 1094.00 1094.0 1094.00 1094
## Pair47 1831 1831.00 1831.0 1831.00 1831
## Paird8 677 677.00 677.0 677.00 677
## Paird9 975 975.00 975.0 975.00 975
## Pailrb 2042 2042.00 2042.0 2042.00 2042
## Pair6 1301 1301.00 1301.0 1301.00 1301
## Pair7 2 2.00 2.0 2.00 2
## Pair8 129 129.00 129.0 129.00 129
## Pair9 332 332.00 332.0 332.00 332
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# ANOSIM statistic R: 0.6145
# Significance: 9.999e-05
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## Perform ANOSIM to test for dissimilarity between differe
nt mother pup pair groups from Freshwater Beach

## First remove levels from the grouping factor, otherwise

R will give an error message (but the calculations are corr
ect either way)

pairsFW <- meta_data.tab[meta_data.tab$Beach == "Freshwater
", 1$PairliD

pairsFW <- droplevels(pairsFW)

X <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach

== "“Freshwater™,], grouping = pairsFW, distance = "bray", p

ermutations = 10000)

summary (x)

Hit

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach ==
"Freshwater", 1., grouping = pairsFW, permutations = 1

0000, distance = "bray"™)
## Dissimilarity: bray

Hit

## ANOSIM statistic R: 0.3494
HHt Significance: 9.999e-05
Ht

## Permutation: free

## Number of permutations: 10000

#it

## Upper quantiles of permutations (null model):
Hil 90% 95% 97.5% 99%

## 0.0904 0.1185 0.1424 0.1696

Ht
## Dissimilarity ranks between and within classes:
Ht 0% 25% 50% 75% 100% N

## Between 1 290.75 569.5 849.25 1128 1104
## PairlO 23 23.00 23.0 23.00 23
## Pairl2 174 174.00 174.0 174.00 174
## Pairlé 286 286.00 286.0 286.00 286
## Pairl9 45 45.00 45.0 45.00 45
## Pair2 198 198.00 198.0 198.00 198
## Pair20 694 694.00 694.0 694.00 694
## Pair2l 753 753.00 753.0 753.00 753
## Pair22 911 911.00 911.0 911.00 911
## Pair23 717 717.00 717.0 717.00 717
## Pair24 1089 1089.00 1089.0 1089.00 1089
## Pair26 218 218.00 218.0 218.00 218
## Pair27 53 53.00 53.0 53.00 53
## Pair28 430 430.00 430.0 430.00 430
## Pair29 400 400.00 400.0 400.00 400
## Pair3 8 8.00 8.0 8.00 8
## Pair3l 803 803.00 803.0 803.00 803
## Pair32 219 219.00 219.0 219.00 219
## Pair34 121 121.00 121.0 121.00 121
## Pair35 276 276.00 276.0 276.00 276
## Pair4 108 108.00 108.0 108.00 108
## Palr6 932 932.00 932.0 932.00 932
## Pair7 2 2.00 2.0 2.00 2
## Pair8 129 129.00 129.0 129.00 129
## Pair9 330 330.00 330.0 330.00 330
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# ANOSIM statistic R: 0.3494
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# Significance: 9.999e-05

## Perform ANOSIM to test for dissimilarity between differe
nt mother pup pairs from Special Study Beach

pairsSSB <- meta_data.tab[meta_data.tab$Beach == "SSB",]$Pa
irlD

pairsSSB <- droplevels(pairsSSB)

X <- vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach
== "SSB'",], grouping = pairsSSB, distance = "bray', permuta
tions = 10000)

summary (x)

Hit

## Call:

## vegan::anosim(dat = otu_table.tab[meta_data.tab$Beach ==
""SSB", 1, grouping = pairsSSB, permutations = 10000,

distance = "bray')
## Dissimilarity: bray

it

## ANOSIM statistic R: 0.4081
Hit Significance: 9.999e-05
#it

## Permutation: free

## Number of permutations: 10000

Hit

## Upper quantiles of permutations (null model):
#t 90% 95% 97.5% 99%

## 0.0849 0.1110 0.1317 0.1523

#it

## Dissimilarity ranks between and within classes:
#it 0% 25% 50% 75% 100% N
## Between 1 290.75 570.5 849.25 1128 1104
## Pairl 4 4.00 4.0 4.00 4

## Pairll 934 934.00 934.0 934.00 934
## Pairl3 630 630.00 630.0 630.00 630
## Pairl4 3 3.00 3.0 3.00 3
## Pairl5 90 90.00 90.0 90.00 90
## Pairl7 345 345.00 345.0 345.00 345
## Pairl8 64 64.00 64.0 64.00 64
## Pair25 42 42.00 42.0 42.00 42
## Pair30 251 251.00 251.0 251.00 251
## Pair33 32 32.00 32.0 32.00 32
## Pair37 97 97.00 97.0 97.00 97
## Pair38 237 237.00 237.0 237.00 237
## Pair39 942 942.00 942.0 942.00 942
## Paird0 491 491.00 491.0 491.00 491
## Pair4l 72 72.00 72.0 72.00 72
## Paird2 498 498.00 498.0 498.00 498
## Pair4d3 1099 1099.00 1099.0 1099.00 1099
## Pairdd 377 377.00 377.0 377.00 377
## Pair45 6 6.00 6.0 6.00 6
## Paird6é 234 234.00 234.0 234.00 234
## Pair4d7 688 688.00 688.0 688.00 688
## Pair4s8 36 36.00 36.0 36.00 36
## Pair49 163 163.00 163.0 163.00 163
## Pairb 807 807.00 807.0 807.00 807
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# ANOSIM statistic R: 0.4081
# Significance: 9.999e-05
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We know that some of the pairs are unrelated, thus we will repeat the
analysis without these unrelated pairs.

library(vegan)

## Because the parentage analysis revealed that several mot
her-pup pairs are infact unrelated, we repeat the analysis
removing these unrelated pairs (Pairs49,46,15,13,11).
unrelated <- c('M49","M46',""M15",""M13",""M11"", "'P49"","'P46","'P
15","P13","P11")

otu_table_rel.tab <- subset(otu_table.tab, !(rownames(otu_t
able.tab) %in% unrelated))

meta_data_rel.tab <- subset(meta_data.tab, !(rownames(meta_
data.tab) %in% unrelated))

meta_data_rel.tab$PairlD <- droplevels(meta_data_rel.tab$Pa
iriD)

## Perform ANOSIM to test for dissimilarity between differe
nt mother pup pailr groups

X <- vegan::anosim(dat = otu_table_rel.tab, grouping =meta_
data_rel .tab$PairlD, distance = "bray", permutations = 1000
0

summary (x)

Hit

## Call:

## vegan::anosim(dat = otu_table_rel.tab, grouping = meta_d
ata_rel.tab$PairlD, permutations = 10000, distance = "
bray')

## Dissimilarity: bray

H#

## ANOSIM statistic R: 0.6016

HHt Significance: 9.999e-05

Hit

## Permutation: free

## Number of permutations: 10000

Hit

## Upper quantiles of permutations (null model):

Hit 90% 95% 97.5% 99%

## 0.0924 0.1190 0.1402 0.1661

HH#
## Dissimilarity ranks between and within classes:
#Ht 0% 25% 50% 75% 100% N

## Between 1 933.75 1846.5 2751.25 3655 3612
## Pairl 415 415.00 415.0 415.00 415
## PairlO 23 23.00 23.0 23.00 23
## Pairil2 174 174.00 174.0 174.00 174
## Pairl4 337 337.00 337.0 337.00 337
## Pairlé 286 286.00 286.0 286.00 286
## Pairl7 1128 1128.00 1128.0 1128.00 1128
## Pairl8 741 741.00 741.0 741.00 741
## Pairl9 45 45.00 45.0 45.00 45
## Pailr2 198 198.00 198.0 198.00 198
## Pair20 726 726.00 726.0 726.00 726
## Pair2l 819 819.00 819.0 819.00 819
## Pair22 1101 1101.00 1101.0 1101.00 1101
## Pair23 765 765.00 765.0 765.00 765
## Pair24 3158 3158.00 3158.0 3158.00 3158
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## Pair25 685 685.00 685.0 685.00 685
## Pair26 218 218.00 218.0 218.00 218
## Pair27 53 53.00 53.0 53.00 53
## Pair28 433 433.00 433.0 433.00 433
## Pair29 402 402.00 402.0 402.00 402
## Pair3 8 8.00 8.0 8.00 8
## Pair30 1024 1024.00 1024.0 1024.00 1024
## Pair3l 895 895.00 895.0 895.00 895
## Pair32 219 219.00 219.0 219.00 219
## Pair33 644 644.00 644.0 644.00 644
## Pair34 121 121.00 121.0 121.00 121
## Pair35 276 276.00 276.0 276.00 276
## Pair37 798 798.00 798.0 798.00 798
## Pair38 1008 1008.00 1008.0 1008.00 1008
## Pair39 1953 1953.00 1953.0 1953.00 1953
## Pair4 108 108.00 108.0 108.00 108
## Pair40 1306 1306.00 1306.0 1306.00 1306
## Pairdl 757 757.00 757.0 757.00 757
## Pair42 1315 1315.00 1315.0 1315.00 1315
## Pair4d3 2599 2599.00 2599.0 2599.00 2599
## Pair44 1171 1171.00 1171.0 1171.00 1171
## Paird5 448 448.00 448.0 448.00 448
## Pair47 1548 1548.00 1548.0 1548.00 1548
## Pair4d8 660 660.00 660.0 660.00 660
## Pairb 1705 1705.00 1705.0 1705.00 1705
## Pailr6 1155 1155.00 1155.0 1155.00 1155
## Pair7 2 2.00 2.0 2.00 2
## Pair8 129 129.00 129.0 129.00 129
## Pair9 331 331.00 331.0 331.00 331

PR PRPRRPRRPRPRPRRRPRPRPRRPRPRPRRRPRPRPRERREPRPRPRREREPR

# ANOSIM statistic R: 0.6016
# Significance: 9.999e-05

## Perform ANOSIM to test for dissimilarity between differe
nt mother pup pair groups from Freshwater Beach

## First remove levels from the grouping factor, otherwise
R will give an error message (but the calculations are corr
ect either way)

pairsFW <- meta_data_rel.tab[meta_data_rel.tab$Beach == "Fr
eshwater™,]$PairlD

pairsFW <- droplevels(pairsFW)

X <- vegan::anosim(dat = otu_table_rel._tab[meta data_rel.ta

b$Beach == "Freshwater™,], grouping = pairsFW, distance = "
bray', permutations = 10000)

summary (x)

#Hit

## Call:

## vegan::anosim(dat = otu_table_rel.tab[meta_data_rel.tab$
Beach == "Freshwater'™, ], grouping = pairsFW, permutat
ions = 10000, distance = "bray')

## Dissimilarity: bray

H#

## ANOSIM statistic R: 0.3494

HHt Significance: 9.999e-05

Hit

## Permutation: free
## Number of permutations: 10000
Hit
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## Upper quantiles of permutations (null model):
#t 90% 95% 97.5% 99%
## 0.0879 0.1129 0.1335 0.1584

#it
## Dissimilarity ranks between and within classes:
#it 0% 25% 50% 75% 100% N

## Between 1 290.75 569.5 849.25 1128 1104
## PairlO 23 23.00 23.0 23.00 23
## Pairl2 174 174.00 174.0 174.00 174
## Pairlé 286 286.00 286.0 286.00 286
## Pairl9 45 45.00 45.0 45.00 45
## Pailr2 198 198.00 198.0 198.00 198
## Pair20 694 694.00 694.0 694.00 694
## Pair2l 753 753.00 753.0 753.00 753
## Pair22 911 911.00 911.0 911.00 911
## Pair23 717 717.00 717.0 717.00 717
## Pair24 1089 1089.00 1089.0 1089.00 1089
## Pair26 218 218.00 218.0 218.00 218
## Pair27 53 53.00 53.0 53.00 53
## Pair28 430 430.00 430.0 430.00 430
## Pair29 400 400.00 400.0 400.00 400
## Pair3 8 8.00 8.0 8.00 8
## Pair3l 803 803.00 803.0 803.00 803
## Pair32 219 219.00 219.0 219.00 219
## Pair34 121 121.00 121.0 121.00 121
## Pair35 276 276.00 276.0 276.00 276
## Pair4 108 108.00 108.0 108.00 108
## Pair6 932 932.00 932.0 932.00 932
## Pair7 2 2.00 2.0 2.00 2
## Pair8 129 129.00 129.0 129.00 129
## Pair9 330 330.00 330.0 330.00 330
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# ANOSIM statistic R: 0.3494
# Significance: 9.999e-05

## Perform ANOSIM to test for dissimilarity between differe
nt mother pup pairs from Special Study Beach

pairsSSB <- meta_data_rel.tab[meta_data_rel.tab$Beach == "'S
SB™,]$PairlD

pairsSSB <- droplevels(pairsSSB)

X <- vegan::anosim(dat = otu_table_rel.tab[meta_data_rel.ta

b$Beach == "SSB'",], grouping = pairsSSB, distance = "bray",
permutations = 10000)

summary (x)

Hit

## Call:

## vegan::anosim(dat = otu_table_rel.tab[meta_data rel.tab$
Beach == "SSB', ], grouping = pairsSSB, permutations =

10000, distance = "bray')
## Dissimilarity: bray

Hit

## ANOSIM statistic R: 0.4561
H# Significance: 9.999e-05
Hit

## Permutation: free

## Number of permutations: 10000

H#

## Upper quantiles of permutations (null model):
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Hit 90% 95% 97.5% 99%
## 0.0994 0.1294 0.1547 0.1851

Hit

## Dissimilarity ranks between and within classes:
HH# 0% 25% 50% 75% 100% N

## Between 1 182.75 357.5 530.25 703 684

## Pairl 3 3.00 3.0 3.00 3

## Pairld 2 2.00 2
## Pairl7 205 205.00 205.
## Pairl8 38 38.00 38.
## Pair25 23 23.00 23.
## Pair30 152 152.00 152.
## Pair33 16 16.00 16.
## Pair37 58 58.00 58. 58.00 58
## Pair38 142 142.00 142.0 142.00 142

.0 2.00 2
0
0
0
0
0
0
0
## Pair39 579 579.00 579.0 579.00 579
0
0
0
0
0
0
0
0
0

205.00 205
38.00 38
23.00 23

152.00 152
16.00 16

## Pair4d0 297 297.00 297.0 297.00 297
## Pairdl 45 45.00 45. 45.00 45
## Pair42 302 302.00 302.0 302.00 302
## Pair4d3 678 678.00 678.0 678.00 678
## Pairdd 227 227.00 227.0 227.00 227
## Pairdb 4 4.00 4. 4.00 4
## Paird7 428 428.00 428.0 428.00 428
## Pair48 19 19.00 19. 19.00 19
## Pair5 506 506.00 506.0 506.00 506
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# ANOSIM statistic R: 0.4561
# Significance: 9.999e-05

Beta diversity correlations

We now want to test if beta diversity is correlated with the genetic relatedness
of individuals. For this, we use the Wang relatedness estimates and a Bray-
Curtis dissimilarity matrix calculated form the CSS normalised OTU table and
run Mantel tests.

library(reshape2)
library(dplyr)
library(vegan)
library(phyloseq)

## Save the relatedness values from the previous analysis i
n a data frame
df <- relvals[,c(2,3,4)]

## To perform mantel tests the data frame has to be transfo
rmed into a distance matrix

## First, we collect the sample names from the phyloseq obj
ect and remove P22 for which we don®"t have relatedness esti
mates

snhames <- sample_names(phylo_normMG.obj)

snhames <- snames[-which(snames==""P22")]

## Create an empty matrix and Fill it with the relateness e
stimates

M <- array(0, c(length(snames), length(snames)), list(sname
S, snames))
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i <- match(df$indl.id, snames)
J <- match(df$ind2.id, snames)
M[cbind(i,j)] <- M[cbind(j,i)] <- df$wang

##Also remove sample P22 from the phyloseq object
phylo_normMG_sub.obj <- subset_samples(phylo_normMG.obj, Sa
mpleNames 1= ""P22')

#phylo _sub.obj <- subset samples(phylo.obj, SampleNames !=
"p22'™)

## Extract OTU table from phyloseq object

0TU1 = as(otu_table(phylo_normMG_sub.obj), "matrix')

## Transpose the otu table
if(taxa_are_rows(phylo_normMG_sub.obj)){0TUl <- t(0TUl)}
## Coerce to data.frame

OTUdF = as.data.frame(OTUL)

## Calulate bray-curtis distance
otu_dist_bray <- as.matrix(vegan::vegdist(as.matrix(0Tudf),

method = "bray", diag=TRUE, upper=TRUE))

## Perform the mantel test

vegan: :mantel (otu_dist_bray,M, method = *'spearman™, permuta
tion = 1000)
Hit

## Mantel statistic based on Spearman®s rank correlation rh
o

H#

## Call:

## vegan::mantel (xdis = otu_dist_bray, ydis = M, method = "
spearman', permutations = 1000)

Hit

## Mantel statistic r: 0.0179

i Significance: 0.2018

Hit

## Upper quantiles of permutations (null model):
#it 90% 95% 97.5% 99%

## 0.0277 0.0360 0.0430 0.0497

## Permutation: free

## Number of permutations: 1000

Testing for differences in microbial composition between the age groups,
overall and separately for each beach.

library(vegan)

## Perform mantel test separately for pups and mothers

## Get the sample names for all mothers and for all pups
snames_M <- sample_names(subset_samples(phylo_normMG.obj, A
ge=="M"))

shames_P <- sample_names(subset_samples(phylo_normMG.obj, A
ge=="P" & SampleNames I= ""P22'))

## Perform the mantel test for mothers

vegan: :mantel (otu_dist_bray[snames_M,snames_M],M[snames_M,s
names_M], method = "spearman', permutation = 1000)

HHt



Analysis of the Antarctic Fur Seal Skin Microbiome

## Mantel statistic based on Spearman®s rank correlation rh
o

Hit

## Call:

## vegan::mantel(xdis = otu_dist_bray[snames_M, snames_M],
ydis = M[snames_M, snames_M], method = *‘spearman’, per
mutations = 1000)

Hit

## Mantel statistic r: 0.03241

HiHt Significance: 0.18581

Hit

## Upper quantiles of permutations (null model):
Hit 90% 95% 97.5% 99%

## 0.0462 0.0575 0.0653 0.0788

## Permutation: free

## Number of permutations: 1000

## Perform the mantel test for pups
vegan: :mantel (otu_dist_bray[snames_P,snames_P], M[snames_P,
snames_P], method = "spearman', permutation = 1000)

Hit
## Mantel statistic based on Spearman®s rank correlation rh
o

Hit

## Call:

## vegan::mantel(xdis = otu_dist_bray[snames_P, snames_P],
ydis = M[snames_P, snames_P], method = "'spearman', per
mutations = 1000)

Hit

## Mantel statistic r: 0.0385

HHt Significance: 0.15984

Hit

## Upper quantiles of permutations (null model):
Hit 90% 95% 97.5% 99%

## 0.0466 0.0579 0.0699 0.0820

## Permutation: free

## Number of permutations: 1000

## Perform mantel test separately for pups and mothers at e
ach beach

## Get the sample names for all mothers and for all pups
sname_M_FWB <- sample_names(subset_samples(phylo_normMG.obj
, BeachAge=="Freshwater M" ))

sname_M_SSB <- sample_names(subset_samples(phylo_normMG.obj
, BeachAge=="SSB M" ))

sname_P_FWB <- sample_names(subset_samples(phylo_normMG.obj
, BeachAge=="Freshwater P & SampleNames != *"P22" ))
sname_P_SSB <- sample_names(subset_samples(phylo_normMG.obj
, BeachAge=="'SSB P" ))

## Perform the mantel test

vegan: :mantel (otu_dist_bray[sname_M_FWB, sname_M_FWB] ,M[sna
me_M_FWB, sname_M_FWB], method = *spearman’, permutation =
1000)

HHt
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## Mantel statistic based on Spearman®s rank correlation rh
o

Hit

## Call:

## vegan::mantel(xdis = otu_dist_bray[sname_M_FWB, sname_M_
FWB], ydis = M[sname_M_FWB, sname_M_FWB], method = *'sp
earman", permutations = 1000)

Hit

## Mantel statistic r: -0.1672

Hit Significance: 0.98302

H#

## Upper quantiles of permutations (null model):
##  90%  95% 97.5%  99%

## 0.107 0.128 0.143 0.166

## Permutation: free

## Number of permutations: 1000

vegan: :mantel (otu_dist_bray[sname_M_SSB, sname_M_SSB],M[sha
me_M_SSB, sname_M_SSB], method = ‘‘spearman’, permutation =
1000)

Hit
## Mantel statistic based on Spearman®s rank correlation rh
o

#Hit

## Call:

## vegan::mantel(xdis = otu_dist_bray[sname_M_SSB, sname_M_
SSB], ydis = M[sname_M_SSB, sname_M_SSB], method = "'sp
earman™, permutations = 1000)

Hit

## Mantel statistic r: 0.0305

HHt Significance: 0.36364

Hit

## Upper quantiles of permutations (null model):
Hit 90% 95% 97.5% 99%

## 0.0955 0.1157 0.1277 0.1525

## Permutation: free

## Number of permutations: 1000

vegan: :mantel (otu_dist_bray[sname_P_FWB, sname_P_FWB],M[sha
me_P_FWB, sname_P_FWB], method = *spearman®, permutation =
1000)

Hit
## Mantel statistic based on Spearman®s rank correlation rh
o]

Hit

## Call:

## vegan::mantel (xdis = otu_dist_bray[sname_P_FWB, sname_P_
FwB], ydis = M[sname_P_FWB, sname_P_FWB], method = "'sp
earman™, permutations = 1000)

it

## Mantel statistic r: -0.004504

H#t Significance: 0.53546

Hit

## Upper quantiles of permutations (null model):
##  90%  95% 97.5%  99%
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## 0.100 0.127 0.150 0.169
## Permutation: free
## Number of permutations: 1000

vegan: :mantel (otu_dist_bray[sname_P_SSB, sname_P_SSB],M[sha

me_P_SSB, sname_P_SSB], method = "'spearman’, permutation =

1000)

Hit

## Mantel statistic based on Spearman®s rank correlation rh
o]

Hit

## Call:

## vegan::mantel(xdis = otu_dist_bray[sname P_SSB, sname P _
SSB], ydis = M[sname_P_SSB, sname_P_SSB], method = *'sp
earman™, permutations = 1000)

Hit

## Mantel statistic r: -0.002328

Hit Significance: 0.53846

Hit

## Upper quantiles of permutations (null model):
Hil 90% 95% 97.5% 99%

## 0.0919 0.1100 0.1301 0.1541

## Permutation: free

## Number of permutations: 1000

We find no correlation between the genetic relatedness of individuals and the
similarity of their microbial communities.

For special study beach pupping locations have been recorded in form of x-y
coordinates in a grid layout. Thus we can test if individuals that are in closer
geographical proximity also share a more similar bacterial community
composition. Similar to genetic relatedness we can test for correlation
between geographical distance on the beach and Bray-Curtis dissimilarity
using Mantel tests.

library(vegan)

## Correlation between geographical distance of SSB individ
uals and their microbiome similarity (beta diversity)

## Geographical locations for pupping events were collected
from the viewing platform and coded as X,Y coordinates in

a grid system

## Read the data file

locs <- read.table('"./AFSmicrobiome_SI1_PuppinglLocations_Rin
put_DatasetS15.txt", sep = "\t", header = T)

## Subset the dataframe for mothers

locs_M <- locs[,c(1,3,4)]

rownames(locs_M) <- locs_M$motherlD

locs M <- locs _M[,-1]

## Subset the dataframe for pups

locs P <- locs[,2:4]

rownames(locs_P) <- locs_P$puplD

locs_ P <- locs P[,-1]

## Calculate a euclidean distance matrix from the geographi
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c coordinates

geo_dist M <- as.matrix(dist(locs_M, method = "euclidean™))
geo_dist P <- as.matrix(dist(locs_P, method = "euclidean'™))
## We need to sort the Bray matrix according to the order o
T the geo_dist matrix first

sname_M_SSB_sorted <- rownames(geo_dist_M)
shame_P_SSB_sorted <- rownames(geo_dist_P)

## Perform the mantel tests

vegan: :mantel (otu_dist _bray[sname_M _SSB sorted, sname_M_SSB
_sorted],geo_dist M, method = "spearman’, permutation = 100

0)

#it
## Mantel statistic based on Spearman®s rank correlation rh
o]

Hit

## Call:

## vegan::mantel (xdis = otu_dist_bray[sname_M_SSB_sorted, s
name_M_SSB_sorted], ydis = geo_dist_M, method = "‘spear
man', permutations = 1000)

Ht

## Mantel statistic r: 0.003016

i Significance: 0.47453

Hit

## Upper quantiles of permutations (null model):
##  90%  95% 97.5%  99%

## 0.141 0.188 0.231 0.261

## Permutation: free

## Number of permutations: 1000

vegan: :mantel (otu_dist_bray[sname_P_SSB_sorted, sname_P_SSB
_sorted],geo_dist_P, method = "spearman’, permutation = 100

0

H#
## Mantel statistic based on Spearman®s rank correlation rh
o

Hit

## Call:

## vegan::mantel(xdis = otu_dist_bray[sname P_SSB_sorted, s
name_P_SSB_sorted], ydis = geo_dist_P, method = "spear
man', permutations = 1000)

Hit

## Mantel statistic r: -0.01026

Hit Significance: 0.49451

H#

## Upper quantiles of permutations (null model):
##  90%  95% 97.5%  99%

## 0.145 0.179 0.231 0.270

## Permutation: free

## Number of permutations: 1000

There is no relationship between geographical distance on the beach and
beta diversity.
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Differential abundance analysis

We now want to statistically test which OTUs show differential abundance
between the beaches and age groups. We use the DESeq2 extension in the
phyloseq package to identify these differentially abundant OTUs.

library(DESeqg2)
library(phyloseq)

## Make the DESeq object using the phyloseq function. Use b
each as variable.

dsBeach <- phyloseq_to_deseg2(phylo.obj, ~ Beach)

## Run test for differential abundance using the negative b
inomial Wald test.

dsBeachtest <- DESeq(dsBeach, test="Wald", fitType="paramet
ric’)

## Extract the result table that contains log2FC and adjust
ed p-values (FDR corrected)

res_beach <- results(dsBeachtest,cooksCutoff = FALSE)

## Use an alpha cutoff of 0.01

alpha <- 0.01

sigtab_beach <- res_beach[which(res_beach$padj < alpha), ]
sigtab_beach <- cbind(as(sigtab_beach, "data.frame'™), as(ta
x_table(phylo.obj)[rownames(sigtab_beach), ], "matrix'™))

paste( "Overall, we find"”, length(sigtab_beach$log2FoldChan
ge)," significantly differentially abundant OTUs with", len
gth(which(sigtab_beach$log2FoldChange < 0)), "being signifi
cantly more abundant at FWB and"™, length(which(sigtab_beach
$log2FoldChange > 0)), "at SSB.")

## [1] "Overall, we find 655 significantly differentially
abundant OTUs with 380 being significantly more abundant at
FWB and 275 at SSB."

## For plotting remove entries for which the phylum level c
lassification is not available

sigtab_beach <- sigtab_beach[-which(is.na(sigtab_beach$Phyl
um)), 1

## Order results by the largest fold change

Xx_beach <- tapply(sigtab_beach$log2FoldChange, sigtab_beach
$Phylum, function(x_beach) max(x_beach))

X_beach <- sort(x_beach, TRUE)

sigtab_beach$Phylum <- factor(as.character(sigtab_beach$Phy
lum), levels=names(x_beach))

## Repeat analyis with age as variable.

dsAge = phyloseq_to_deseqg2(phylo.obj, ~ Age)

dsAgetest = DESeq(dsAge, test="Wald", FfitType="parametric')
res_age <- results(dsAgetest,cooksCutoff = FALSE)

alpha <- 0.01

sigtab_age <- res_age[which(res_age$padj < alpha), ]
sigtab_age <- cbind(as(sigtab_age, "data.frame'), as(tax_ta
ble(phylo.obj)[rownames(sigtab_age), ], "matrix™))

paste( "Overall, we find", length(sigtab_age$log2FoldChange
)," significantly differentially abundant OTUs with", lengt
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h(which(sigtab_age$log2FoldChange < 0)), "being significant
ly more abundant in mothers and", length(which(sigtab_age$l
og2FoldChange > 0)), "in pups.")

## [1] "Overall, we find 155 significantly differentially
abundant OTUs with 138 being significantly more abundant in
mothers and 17 in pups.'

sigtab_age <- sigtab_age[-which(is.na(sigtab_age$Phylum)),
1

x_age <- tapply(sigtab_age$log2FoldChange, sigtab_age$Phylu
m, Ffunction(x_age) max(x_age))

X_age <- sort(x_age, TRUE)

sigtab_age$Phylum <- factor(as.character(sigtab_age$Phylum)
, levels=names(x_age))

We find more differentially abundant OTUs between the two breeding
colonies and than between the two age groups. We can plot the results to
further examine the magnitude of the fold changes and which phyla the
differentially abundant OTUs belong to.

library(ggplot2)

## Assign colours to the phyla (matching those from the rel
ative abundance plot)

phylcols <- c(Acidobacteria = "#673770",Actinobacteria = "#
S5F7FC7", Armatimonadetes = "#ffell9", Bacteroidetes = "oran
ge"™, BRC1 = "#808000",Candidatus_Saccharibacteria = "#DA572
4", Chloroflexi = "#3cb44b', Cyanobacteria = "#508578",Dein
ococcus_Thermus = "#CD9BCD",Firmicutes = "#AD6F3B",Fusobact
eria = "#CBD588",Gemmatimonadetes = "#fabebe", Ignavibacteri
ae = "#aaffc3",Microgenomates = "#808080",Planctomycetes =

"#D14285" ,Proteobacteria = "#652926",SR1 = ""#000080",Synerg
istetes = "#46f0fF0",Tenericutes = "#C84248" ,Verrucomicrobia
= "#8569D5")

## Change name of Candidatus_Saccharibacteria and Deinococc
us_Thermus back to the original names used in the table
names(phylcols) [which(names(phylcols)==""Candidatus_Sacchari
bacteria')] <- "Candidatus Saccharibacteria"
names(phylcols) [which(names(phylcols)=="Deinococcus_Thermus
)] <- "Deinococcus-Thermus"

## Make the plot
ggplot(sigtab_beach, aes(x=Phylum, y=log2FoldChange, colour
=Phylum)) +

geom_point(size=2.5) +

geom_hline(yintercept = 0,linetype = 2, colour=
"'gray44')+

theme_bw(Q)+

theme(axis.text.x = element_blank(),axis.ticks.
x = element_blank(),axis.title.x = element_blank(), axis.ti
tle.y = element_text(size=14), axis.text.y = element_text(s
ize=12))+

guides(colour = guide_legend(override.aes = lis
t(shape = 15, size = 5.5, linetype=0), ncol = 1))+

theme(legend.text = element_text( size = 10),le
gend.title = element_text(face="bold"))+
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ylab("'log2FC™)+

ggtitle("'DA between beaches™)+

expand_limits(y=c(-7.5,11))+

scale_colour_manual (values=phylcols)+

theme(panel .grid.major = element_blank(), panel
.grid.minor = element_blank())
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Figure 12. Differential abundance of OTUs between the two breeding colonies.
OTU phylum memberships are represented by the different colours. OTUs above 0
are significantly more abundant at SSB and OTUs below 0 are significantly more
abundant at FWB.

library(ggplot2)

## Assign colours to the phyla (matching those from the rel
ative abundance plot)

phylcols <- c(Acidobacteria = "#673770",Actinobacteria = "#
5F7FC7', Armatimonadetes = "#ffell9", Bacteroidetes = "oran
ge", BRC1 = "#808000",Candidatus_Saccharibacteria = "#DA572
4", Chloroflexi = "#3cb44b™, Cyanobacteria = "#508578",Dein
ococcus_Thermus = "#CD9BCD",Firmicutes = "#AD6F3B",Fusobact
eria = "#CBD588",Gemmatimonadetes = "#fabebe', Ignavibacteri
ae = "#aaffc3",Microgenomates = "#808080",Planctomycetes =

"#D14285" ,Proteobacteria = "#652926",SR1 = "#000080",Synerg
istetes = "#46fF0f0",Tenericutes = "#C84248",Verrucomicrobia
= "#8569D5")

## Change name of Candidatus_Saccharibacteria and Deinococc
us_Thermus back to the original names used in the table
names(phylcols) [which(names(phylcols)=="Candidatus_Sacchari
bacteria')] <- "Candidatus Saccharibacteria"
names(phylcols) [which(names(phylcols)=="Deinococcus_Thermus
)] <- "Deinococcus-Thermus"

## Make the plot
ggplot(sigtab_age, aes(x=Phylum, y=log2FoldChange, colour=P
hylum)) +

geom_point(size=2.5) +

geom_hline(yintercept = 0, linetype = 2, colour="g
ray44')+

theme_bw(Q+

theme(axis.text.x = element_blank(),axis.ticks

.x = element_blank(),axis.title.x = element_blank(), axis.t
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itle.y = element_text(size=14), axis.text.y = element_text(
size=12))+

guides(colour = guide_legend(override.aes = list(
shape = 15, size = 5.5, linetype=0), ncol = 1))+

theme(legend.text = element_text( size = 10),lege
nd.title = element_text(face="bold"))+

expand_limits(y=c(-7.5,11))+

ylab(*"log2FC'")+

ggtitle("'DA between age groups'™)+

scale_colour_manual (values=phylcols)+

theme(panel .grid.major = element_blank(), panel.g
rid.minor = element_blank())
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Figure 13. Differential abundance of OTUs between the two age groups. OTU
phylum memberships are represented by the different colours. OTUs above 0 are
significantly more abundant in pups and OTUs below 0 are significantly more
abundant in mothers.

library(DESeqg2)

## Find the differences between the age groups at each beac
h and within each age group between the beaches

## Make subsets of the data
phylo_FW.obj = subset_samples(phylo.obj, sample_data(phylo.

obj)$Beach == "Freshwater"™)

phylo _SSB.obj = subset samples(phylo.obj, sample_data(phylo
.obj)$Beach == ""SSB™)

phylo M.obj = subset_samples(phylo.obj, sample_data(phylo.o
bj)$Age == M)

phylo P.obj = subset_samples(phylo.obj, sample_data(phylo.o
bj)$Age == "P")

## Run DESeg2 for Freshwater Beach (compare age groups with
in FWB)

dsBeach_FW = phyloseq_to_deseq2(phylo_FW.obj, ~ Age)

## Run test for differential abundance using the negative b
inomial Wald test.

dsBeachtest_FW = DESeq(dsBeach_FW, test="Wald"”, fitType="pa
rametric')

## Extract the result table that contains logFC and adjuste
d p-values (FDR corrected)

res_FW <- results(dsBeachtest_ FW,cooksCutoff = FALSE)
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## Use a strict alpha cutoff of 0.01

alpha <- 0.01

sigtab_FW <- res_FW[which(res_FW$padj < alpha), ]
sigtab_FW <- cbind(as(sigtab_FW, *“data.frame’™), as(tax_tabl
e(phylo_FW.obj)[rownames(sigtab_FW), ], "matrix'))

# dim(sigtab_FW) #69 13

sigtab_FW <- sigtab_FW[-which(is.na(sigtab_FW$Phylum)), ]

## Order results by the largest fold change

X_FW <- tapply(sigtab_FW$log2FoldChange, sigtab_FW$Phylum,
function(x_FW) max(x_FW))

X_FW <- sort(x_FW, TRUE)

sigtab_FW$Phylum <- factor(as.character(sigtab_FW$Phylum),
levels=names(x_FW))

## Run DESeg2 for Special Study Beach (compare age groups w
ithin SSB)

dsBeach_SSB = phyloseq_to_deseqg2(phylo_SSB.obj, ~ Age)
dsBeachtest_SSB = DESeq(dsBeach_SSB, test="Wald", fitType="
parametric')

res_SSB <- results(dsBeachtest_SSB,cooksCutoff = FALSE)
alpha <- 0.01

sigtab_SSB <- res_SSB[which(res_SSB$padj < alpha), ]
sigtab_SSB <- chind(as(sigtab_SSB, "data.frame'™), as(tax_ta
ble(phylo_SSB.obj)[rownames(sigtab_SSB), ], "matrix'))

# dim(sigtab_SSB) #64 13

sigtab_SSB <- sigtab_SSB[-which(is.na(sigtab_SSB$Phylum)),
1

X_SSB <- tapply(sigtab_SSB$log2FoldChange, sigtab_SSB$Phylu
m, Function(x_SSB) max(x_SSB))

X_SSB <- sort(x_SSB, TRUE)

sigtab_SSB$Phylum <- factor(as.character(sigtab_SSB$Phylum)
, levels=names(x_SSB))

## Run DESeq2 for mothers (compare the two beaches for this
age group) -

dsBeach_M = phyloseq_to_deseqg2(phylo_M.obj, ~ Beach)
dsBeachtest M = DESeq(dsBeach_M, test="Wald", fitType="para
metric’™)

res_ M <- results(dsBeachtest M, cooksCutoff = FALSE)

alpha <- 0.01

sigtab_M <- res_M[which(res_M$padj < alpha), 1]

sigtab_M <- cbind(as(sigtab_M, "data.frame'™), as(tax_table(
phylo_M.obj)[rownames(sigtab_M), ], "matrix'™))

# dim(sigtab_M) #610 13

sigtab_M <- sigtab_M[-which(is.na(sigtab_M$Phylum)), 1]

X_M <- tapply(sigtab_M$log2FoldChange, sigtab_M$Phylum, fun
ction(x_M) max(x_M))

X_M <- sort(x_M, TRUE)

sigtab_M$Phylum <- factor(as.character(sigtab_M$Phylum), le

vels=names(x_M))

## Run DESeg2 for pups (compare the two beaches for this ag
e group).

dsBeach_P = phyloseq_to_deseq2(phylo_P.obj, ~ Beach)
dsBeachtest_P = DESeq(dsBeach_P, test="Wald", FfitType="para
metric™)

res_P <- results(dsBeachtest P,cooksCutoff = FALSE)

alpha <- 0.01

sigtab_P <- res_P[which(res_P$padj < alpha), 1]
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sigtab_P <- cbind(as(sigtab_P, "data.frame'™), as(tax_table(
phylo_P.obj)[rownames(sigtab_P), ], "matrix'™))

# dim(sigtab_P) #487 13

sigtab_P <- sigtab_P[-which(is.na(sigtab_P$Phylum)), ]

x_P = tapply(sigtab_P$log2FoldChange, sigtab_P$Phylum, func
tion(x_P) max(x_P))

X_P = sort(x_P, TRUE)

sigtab_P$Phylum = factor(as.character(sigtab P$Phylum), lev
els=names(x_P))

## Which groups have more abundant OTUs?

paste( "At FWB'", length(which(sigtab_FW$log2FoldChange < 0)
), "OTUs are significantly more abundant in mothers and", 1
ength(which(sigtab_FW$log2FoldChange > 0)), "in pups.’™)

## [1] "At FWB 37 OTUs are significantly more abundant in m
others and 40 in pups.”

paste( "At SSB'", length(which(sigtab_SSB$log2FoldChange < 0O
D)), "OTUs are significantly more abundant in mothers and",
length(which(sigtab_SSB$log2FoldChange > 0)), "in pups.')

## [1] "At SSB 55 OTUs are significantly more abundant in m
others and 8 in pups.”

paste( "In the mother cohort™, length(which(sigtab_M$log2Fo
IdChange < 0)), "OTUs are significantly more abundant at FW
B and", length(which(sigtab_M$log2FoldChange > 0)), "at SSB
-

## [1] "In the mother cohort 337 OTUs are significantly mor
e abundant at FWB and 242 at SSB."

paste( "In the pup cohort™, length(which(sigtab P$log2FoldC
hange < 0)), "0TUs are significantly more abundant at FWB a
nd"”, length(which(sigtab_P$log2FoldChange > 0)), "at SSB.'")

## [1] "In the pup cohort 298 OTUs are significantly more a
bundant at FWB and 164 at SSB."

library(cowplot)
library(ggplot2)

## Assign collours to the phyla (matching those from the rel
ative abundance plot)

phylcols <- c(Acidobacteria = "#673770",Actinobacteria = "#
S5F7FC7", Armatimonadetes = "#ffell9", Bacteroidetes = "oran
ge", BRC1 = "#808000",Candidatus_Saccharibacteria = "#DA572
4™, Chloroflexi = "#3cb44b', Cyanobacteria = "#508578",Dein
ococcus_Thermus = "#CD9BCD",Firmicutes = "#AD6F3B",Fusobact
eria = "#CBD588",Gemmatimonadetes = "#fabebe", Ignavibacteri
ae = "#aaffc3'",Microgenomates = "#808080",Planctomycetes =

"'#D14285" ,Proteobacteria = "#652926",SR1 = "#000080",Synerg
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istetes = "#46f0F0",Tenericutes = "#C84248" ,Verrucomicrobia
= "#8569D5")

names(phylcols) [which(names(phylcols)=="Candidatus_Sacchari
bacteria')] <- "Candidatus Saccharibacteria"
names(phylcols) [which(names(phylcols)=="Deinococcus_Thermus
)] <- "Deinococcus-Thermus"

## Make the plot
FW <- ggplot(sigtab_FW, aes(x=Phylum, y=log2FoldChange, col
our=Phylum)) +

geom_point(size=2) +

geom_hline(yintercept = 0, linetype = 2, colour="g
ray44')+

theme_bw(Q)+

theme(axis.text.x = element_blank(),axis.ticks.x
= element_blank(),axis.title.x = element_blank(),axis.text.
y = element_text(size=10))+

guides(colour = guide_legend(override.aes = list(
shape = 15, size = 5.5, linetype=0), ncol = 1))+

theme(legend.text = element_text( size = 10),lege
nd.title = element_text(face="bold"))+

ylab(*'log2FC'™")+

expand_limits(y=c(-7.5,11))+

theme(legend.position=""none")+

ggtitle("DA between age groups at FWB™)+

scale_colour_manual (values=phylcols)+

theme(panel .grid.major = element_blank(),panel .gr
id.minor = element_blank())

## Make the plot
SSB <- ggplot(sigtab_SSB, aes(x=Phylum, y=log2FoldChange, c
olour=Phylum)) +

geom_point(size=2) +

geom_hline(yintercept = 0,linetype = 2, colour="gra
y44'")+

theme_bw()+

theme(axis.text.x = element_blank(),axis.ticks.x =
element_blank(),axis.title.x = element_blank(),axis.text.y
= element_text(size=10))+

guides(colour = guide_legend(override.aes = list(sh
ape = 15, size = 5.5, linetype=0), ncol = 1))+

theme(legend. text = element_text( size = 10),legend
_title = element_text(face="bold"))+

ylab(*"log2FC™)+

expand_limits(y=c(-7.5,11))+

theme(legend.position="none")+

ggtitle("'DA between age groups at SSB™)+

scale_colour_manual (values=phylcols)+

theme(panel .grid.major = element_blank(),panel.grid
-minor = element_blank())

## Make the plot
M <- ggplot(sigtab_M, aes(x=Phylum, y=log2FoldChange, colou
r=Phylum)) +

geom_point(size=2) +

geom_hline(yintercept = 0, linetype = 2, colour="gra
ya4'*)+

theme_bw()+

theme(axis.text.x = element_blank(),axis.ticks.x =
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log2FC

log2FC

element_blank(),axis.title.x

element_blank(),axis.text.y

element_text(size=10))+

guides(colour = guide_legend(override.aes = list(sh
ape = 15, size = 5.5, linetype=0), ncol = 1))+
theme(legend.text = element_text( size = 10), legend

.title

.minor

element_text(face="bold))+

ylab(*"log2FC'™)+

expand_limits(y=c(-7.5,11))+

scale_colour_manual (values=phylcols)+

ggtitle("DA in mothers between beaches'™)+

theme(legend.position="none")+

theme(panel .grid.major = element_blank(),panel.grid
element_blank())

## Make the plot
P <- ggplot(sigtab_P, aes(x=Phylum, y=log2FoldChange, colou
r=Phylum)) +

y44'")+

geom_point(size=2) +
geom_hline(yintercept = 0, linetype

2, colour="gra

theme_bw(Q+
theme(axis.text.x

element_blank(),axis.ticks.x

element_blank(), axis.title.x = element_blank(),axis.text.y

ape = 15, size = 5.5,

_title

.minor

plot grid(M,FW,P,SSB, align

DA in mothers between beaches

element_text(size=10))+

guides(colour = guide_legend(override.aes
linetype=0), ncol 1))+
theme(legend.text = element_text( size
element_text(face="bold))+
ylab(*'log2FC™)+
expand_limits(y=c(-7.5,11))+
scale_colour_manual (values=phylcols)+
ggtitle("'DA in pups between beaches')+
theme(legend.position="none")+
theme(panel .grid.major = element_blank(),panel.grid
element_blank())

list(sh

10), legend

\%

,axis="r" ,nrow=2, ncol=2)
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Figure 14. Differential abundance of OTUs between the two breeding colonies and
the two age groups. OTU phylum memberships are represented by the different
colours. OTUs above 0 are significantly more abundant at SSB/in pups and OTUs
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below 0 are significantly more abundant at FWB/in mothers.

Heatmap of OTU abundance

The OTU abundance for each sample can also be visualised using a
heatmap. As input for abundance we use the CSS normalised OTU counts
with added pseudocount.

#library(phyloseq)
library(phyloseq)
library(pheatmap)
library(dplyr)

## Define colours for the heatmap and

## the colour gradient for abundance

heatcols <- c(''#EFDECO","#EFBE95", ''#E48889", "#DA577C", "#
C13177", "#901A81", "#640089', "#480076", "#350155'")
heatmapCols <- colorRampPalette(heatcols)(50)

## Define the phyla colours

phylcols <- c(Acidobacteria = "#673770" ,Actinobacteria = "#
S5F7FC7", Armatimonadetes = "#ffell9", Bacteroidetes = "oran
ge", BRC1 = "#808000",Candidatus_Saccharibacteria = "#DA572
4", Chloroflexi = "#3cb44b', Cyanobacteria = "#508578",Dein
ococcus_Thermus = "#CD9BCD",Firmicutes = "#AD6F3B",Fusobact
eria = "#CBD588",Gemmatimonadetes = "#fabebe", Ignavibacteri
ae = "'#aaffc3'" ,Microgenomates = "#808080",Planctomycetes =

"#D14285" ,Proteobacteria = "#652926'",SR1 = ""#000080",Synerg
istetes = "#46f0f0",Tenericutes = "#C84248",Verrucomicrobia
= "#8569D5" ,undefined = "lightgrey)

## Correct some names to match the naming in the table
names(phylcols) [which(names(phylcols)=="Candidatus_Sacchari
bacteria')] <- "Candidatus Saccharibacteria"
names(phylcols) [which(names(phylcols)=="Deinococcus_Thermus
)] <- "Deinococcus-Thermus"

## Define the colours used for mothers and pups at each bea
ch

samplecols <- c(FWB_mothers= "dodgerblue3",FWB_pups = "#d7e
4f5", SSB_mothers = "firebrick2", SSB_pups = "#ffd6d7')

## Make a list of the colour vectors for the heatmap functi
on

ann_colors <- list(Phylum = phylcols, BeachAge = samplecols
))

## Correct the names to match the naming in the table
names(ann_colors$BeachAge) [which(names(ann_colors$BeachAge)
=="FWB_mothers'")] <- "FWB mothers"
names(ann_colors$BeachAge) [which(names(ann_colors$BeachAge)
=="FWB_pups')] <- "FWB pups"

names(ann_colors$BeachAge) [which(names(ann_colors$BeachAge)
==""SSB_mothers')] <- "SSB mothers"
names(ann_colors$BeachAge) [which(names(ann_colors$BeachAge)
=="SSB_pups')] <- "SSB pups’

## The abundance will be based on the CSS normalised OTU co
unts with added pseudocount (input for the beta diversity a



Analysis of the Antarctic Fur Seal Skin Microbiome

nalysis)

## Extract the taxonomic information for OTUs from the phyl
oseq object

heatmap.tab <- as.data.frame(as(tax_table(phylo.obj)[rownam
es(metag.-norm.counts_log2), ], "matrix'™))

## Make a data frame that has the sample meta information a
bout beach and age of the individuals

## (The rownames have to be present to plot the heatmap)
colannot <- as.data.frame(meta_data.tab$BeachAge, row.names
= rownames(meta_data.tab))

colnames(colannot) <- "BeachAge"

levels(colannot$BeachAge) <- c(levels(colannot$BeachAge), "
FWB mothers™,"SSB mothers™,"FWB pups', "'SSB pups™ )
colannot$BeachAge[which(colannot$BeachAge==""Freshwater M™)]
<- "FWB mothers"
colannot$BeachAge[which(colannot$BeachAge=="Freshwater P'")]
<- "FWB pups"
colannot$BeachAge[which(colannot$BeachAge==""SSB M')] <- "'SS
B mothers™

colannot$BeachAge[which(colannot$BeachAge==""SSB P'')] <- "'SS
B pups"

colannot$BeachAge <- droplevels(colannot$BeachAge)

## Make a data frame that contains the phylum information f
or each OTU

## (The rownames have to be present to plot the heatmap)
rowannot <- as.data.frame(heatmap.tab[, " Phylum'])
colnames(rowannot) <- "Phylum"

levels(rowannot$Phylum) <- c(levels(rowannot$Phylum), "unde
fined™)

rowannot$Phylum[is.na(rowannot$Phylum)] <- "undefined"
rowannot$Phylum <- droplevels(rowannot$Phylum)

## Plot the heatmap

pheatmap: : pheatmap(metag.norm.counts_log2, color=heatmapCol
s, annotation_col=colannot, annotation_row=rowannot, show_r
ownames = FALSE, annotation_colors=ann_colors, drop_levels=
TRUE, fontsize_row = 1, fontsize_col = 4, annotation_names

_row=FALSE, annotation_names_col=FALSE)
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Figure 15. Heatmap of OTU abundance. Each column corresponds to one
individual and each row corresponds to an OTUs. Abundance is represented by the
log transformed CSS normalised OTU counts with added pseudocounts. The
horizontal bar above the plot indicates which breeding colony and age group an
individual belongs to. The vertical bar on the left-hand side of the plot represents
the phylum membership of each OTU.

Heterozygosity & bacterial diversity

We want to explore the relationship between heterozygosity and bacterial
diversity as it has been suggested that the host can excert some control over
its microbial community. We hypothesise that the strength of control over the
microbiota depends on the heterozygosity of an individual. Standardised
multilocus heterozygosity (sMLH, total number of heterozygous loci in an
individual divided by the sum of average observed heterozygosities in the
population over the subset of loci successfully typed in the focal individual)
was calculated for each individual with inbreedR.

We use LMMs and include interaction terms to investigate whether the effect
of an individual's heterozygosity on alpha diversity is different between the
age classes and breeding colonies.

library(inbreedR)
library(dplyr)
library(ggplot2)
library(lme4)
library(MuMIn)
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## Calculate individual heterozygozity and correlate with a
Ipha diversity

## Import the preformatted microsatellite table and remove
NAs

msats <- read.table("./AFSmicrobiome_SI_MicrosatelliteGenot
ypes50_P22removed_colnames_Rinput_DatasetS5.1.txt",header=T
RUE,row.names = 1, sep= "\t", na.strings=c("",""NA™))
is.na(msats) <- Imsats

## Convert to inbreedR format

genos <- inbreedR::convert_raw(msats)

## Calculate heterozygosity (sMLH)

heterozygosity <- inbreedR::sMLH(genos)

## Use the alpha diversity estimates from the alpha_model_u
nrel.tab

het_alpha.tab <- as.data.frame(subset(alpha_model_unrel.tab
, select=c(''Beach",""Age","PairlD","SamplelD","jostl all","P
airibD2™)))

heterozygosity <- as.data.frame(heterozygosity)
heterozygosity["'SamplelD"] <- rownames(heterozygosity)
het_alpha.tab <- left_join(het_alpha.tab, heterozygosity, b
y="SamplelD')

het_alpha.tab["'BeachAge'™] <- paste(het_alpha.tab$Beach,het_
alpha.tab$Age )

## Run LMMs to examine the relationship between heterozygos
ity and bacterial alpha diversity. We include two interacti
on terms to investigate if the effect of an individual®s he
terozygosity on alpha diversity is different between the br
eeding colonies and the age classes.

## Centre heterozygosity
het_alpha.tab <- cbind(het_alpha.tab, sHeteroz = scale(het_
alpha.tab$heterozygosity,scale=FALSE,center = TRUE))

## Run the full model for FWB

model_full <- Imer(sqrt(jostl_all) ~ sHeteroz + Beach + Age
+ sHeteroz*Beach + sHeteroz*Age + (1|PairlD2), data = het_
alpha.tab)

## Check the residual plots

plot(model_full)
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## Examine the model output
summary(model_full)
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## Linear mixed model fit by REML ["ImerMod®]
## Formula: sqrt(jostl_all) ~ sHeteroz + Beach + Age + sHet
eroz * Beach +

HHt sHeteroz * Age + (1 | PairlD2)

HHt Data: het_alpha.tab

Hit

## REML criterion at convergence: 367.6

Hit

## Scaled residuals:

H#t Min 1Q Median 30 Max

## -2.1589 -0.6977 -0.0091 0.6718 2.3245

Hit

## Random effects:

## Groups Name Variance Std.Dev.

## PairlD2 (Intercept) 0.3123 0.5588

## Residual 3.0917 1.7583

## Number of obs: 95, groups: PairlD2, 53

Hit

## Fixed effects:

H# Estimate Std. Error t value
## (Intercept) 8.3744 0.3350 24.995
## sHeteroz -9.8477 3.8534 -2.556
## BeachSSB -1.6848 0.3936 -4.281
## AgeP -0.2879 0.3682 -0.782
## sHeteroz:BeachSSB 7.7464 4.9056 1.579
## sHeteroz:AgeP -0.3200 4.9871 -0.064
Hit

## Correlation of Fixed Effects:

Hit (Intr) sHetrz BchSSB AgeP sH:BSS
## sHeteroz -0.104

## BeachSSB -0.593 0.001

## AgeP -0.536 0.103 -0.010

## SHtrz:BcSSB -0.020 -0.483 -0.001 -0.001
## sHeterz:AgP 0.092 -0.482 0.001 0.008 -0.230

## Calculates the marginal (only for fixed effects) and con
ditional (for all effects) R squared for the LMM
r .squaredGLMM(model_full)

H R2m R2c
## 0.2354759 0.3056198

## Likelihood ratio tests

## anova does not work if missing data are present. Heteroz
ygosity could not be calculated for one individual due to m
issing genotypes. This invididual will be removed from the
table first. This does not change the results of the model
above.

het_alpha2.tab <- het_alpha.tab

het_alpha2.tab <- het_alpha2.tab[-which(is.na(het_alpha2.ta
b$heterozygosity)),]

full <- Imer(sqrt(jostl_all) ~ sHeteroz + Beach + Age + + s
Heteroz*Beach + sHeteroz*Age + (1]PairlD2), data = het_alp
ha2.tab, REML=FALSE)

## test interaction first. If not significant remove from m
odel
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ageint <- Imer(sqgrt(jostl_all) ~ sHeteroz + Beach + Age + s
Heteroz*Beach + (1|PairiD2), data = het_alpha2.tab, REML=F

ALSE)

beachint <- Imer(sgrt(jostl_all) ~ sHeteroz + Beach + Age +
sHeteroz*Age + (1|PairlD2), data = het_alpha2.tab, REML=F

ALSE)

anova(full,beachint)

## Data: het_alpha2.tab
## Models:

## beachint: sqrt(jostl_all) ~ sHeteroz + Beach + Age + sHe

teroz * Age + (1 |
## beachint: PairiD2)

## full: sqgrt(Jostl_all) ~ sHeteroz + Beach + Age + +sHeter

0z * Beach +

## Full: sHeteroz * Age + (1 | PairlD2)
i Df AlC BIC logLik deviance Chisq Chi Df
Pr(>Chisq)

## beachint 7 396.03 413.91 -191.01 382.03

## full 8 395.41 415.84 -189.71 379.41 2.6177

0.1057

anova(full,ageint)

## Data: het_alpha2.tab
## Models:

1

## ageint: sgrt(jostl_all) ~ sHeteroz + Beach + Age + sHete

roz * Beach +

## ageint: (1 | PairiD2)

## Ffull: sqrt(Jostl_all) ~ sHeteroz + Beach
0oz * Beach +

## Tull: sHeteroz * Age + (1 | PairlD2)
HHt Df AlIC BIC logLik deviance
r(>Chisq)

## ageint 7 393.42 411.30 -189.71  379.42

## Tull 8 395.41 415.84 -189.71 379.41
0.9432

## refit without interactions

+ Age + +sHeter

Chisq Chi Df P

0.0051

1

model_full <- Imer(sqrt(jostl_all) ~ sHeteroz + Beach + Age

+ (1|PairiD2), data = het_alpha.tab)
## Check the residual plots
plot(model_full)
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## Examine the model output
summary(model_full)
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## Linear mixed model fit by REML ["ImerMod-"]
## Formula: sqrt(jostl_all) ~ sHeteroz + Beach + Age + (1 |

PairlD2)
HHt Data: het_alpha.tab
H#
## REML criterion at convergence: 380.2
Ht
## Scaled residuals:
H# Min 1Q Median 30 Max
## -2.0646 -0.7981 -0.1106 0.7185 2.3301
Hit
## Random effects:
## Groups Name Variance Std.Dev.
## PairlD2 (Intercept) 0.3902 0.6247
## Residual 3.0426 1.7443
## Number of obs: 95, groups: PairlD2, 53
Hit
## Fixed effects:
it Estimate Std. Error t value
## (Intercept) 8.3737 0.3363 24.901
## sHeteroz -6.0578 2.4273 -2.496
## BeachSSB -1.6819 0.3987 -4.218
## AgeP -0.2863 0.3658 -0.783
Hit
## Correlation of Fixed Effects:
HHt (Intr) sHetrz BchSSB

## sHeteroz -0.094
## BeachSSB -0.600 0.001
## AgeP -0.531 0.172 -0.010

## Calculates the marginal (only for fixed effects) and con
ditional (for all effects) R squared for the LMM
r .squaredGLMM(model_full)

Hi R2m R2c
## 0.2153902 0.3045733

## New full model without interactions

full <- Imer(sqgrt(jostl_all) ~ sHeteroz + Beach + Age + (1]
PairlD2), data = het_alpha2.tab, REML=FALSE)

#LRT

het <- Imer(sqrt(jJostl_all) ~ Beach + Age + (1|PairiD2), d
ata = het_alpha2.tab, REML=FALSE)

beach <- Imer(sqrt(jostl_all) ~ sHeteroz + Age + (1|PairiD2
), data = het_alpha2.tab, REML=FALSE)

age <- Imer(sqrt(jostl_all) ~ sHeteroz + Beach + (1|PairlD2
), data = het_alpha2.tab, REML=FALSE)

anova(full,het)

## Data: het_alpha2.tab

## Models:

## het: sqrt(jostl_all) ~ Beach + Age + (1 | PairlD2)

## full: sqrt(jostl_all) ~ sHeteroz + Beach + Age + (1 | Pa
iriD2)

HHt Df AlIC BIC logLik deviance Chisq Chi DFf Pr(
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>Chisq)
## het 5 397.83 410.60 -193.91  387.83

## full 6 394.13 409.46 -191.07 382.13 5.6931 1

0.01703 *

S

## Signif. codes: 0 "**** 0.001 "*** 0.01 "*" 0.05 "." 0.1
-

anova(full,beach)

## Data: het_alpha2.tab

## Models:

## beach: sgrt(jostl_all) ~ sHeteroz + Age + (1 | PairlD2)
## Tull: sqrt(Jostl_all) ~ sHeteroz + Beach + Age + (1 | Pa
iriD2)

Hit Df AlC BIC IlogLik deviance Chisq Chi Df Pr
(>Chisq)

## beach 5 407.75 420.52 -198.88 397.75

## full 6 394.13 409.46 -191.07 382.13 15.621 17
.739e-05 ***

S

## Signif. codes: 0 "**** 0.001 "*** 0.01 "*" 0.05 "." 0.1
“ . g

anova(full,age)

## Data: het_alpha2.tab

## Models:

## age: sqrt(jostl_all) ~ sHeteroz + Beach + (1 | PairliD2)
## full: sqrt(Jostl_all) ~ sHeteroz + Beach + Age + (1 | Pa
irib2)

HHt Df AlIC BIC logLik deviance Chisq Chi DFf Pr(
>Chisq)

## age 5 392.77 405.54 -191.38 382.77

## full 6 394.13 409.46 -191.07 382.13 0.6362 1
0.4251

We find that alpha diversity and heterozygosity are significantly correlated,
with decreased alpha diversity in more heterozygous individuals. The non-
significant interaction terms suggest that the effect does not differ between
the age classes and breeding colonies.

library(ggplot2)

## Draw the plot with separate points and ablines for each

group (e.g- FWB mothers)

model_full_int <- Imer(sqrt(jostl_all) ~ sHeteroz + Beach +
Age + sHeteroz*Beach + sHeteroz*Age + (1|PairlD2), data =

het_alpha.tab)
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#summary(model_full_int)$coefficients

# Estimate Std. Error t value
# (Intercept) 8.3743789 0.3350369 24.99539266
# sHeteroz -9.8476947 3.8534081 -2.55558055
# BeachSSB -1.6847756 0.3935801 -4.28064240
# AgeP -0.2879318 0.3681890 -0.78202167
# sHeteroz:BeachSSB 7.7464112 4.9055802 1.57910193
# sHeteroz:AgeP -0.3200377 4.9871232 -0.06417281

intercept_FWB_M <- summary(model_full_int)$coefficients[1,1
1

intercept_SSB M <- (summary(model full_int)$coefficients[1,
11)+(summary(model_full_int)$coefficients[3,1])
intercept_FWB_P <- (summary(model full_int)$coefficients[1,
11)+(summary(model_full_int)$coefficients[4,1])
intercept_SSB_P <- (summary(model_full_int)$coefficients[1,
11)+(summary(model_full_int)$coefficients[3,1])+(summary(mo
del_full_int)$coefficients[4,1])

slope_FWB_M <- summary(model_full_int)$coefficients[2,1]
slope_SSB_M <- (summary(model_full_int)$coefficients[2,1])+
(summary(model_full_int)$coefficients[5,1])

slope_FWB_P <- (summary(model_full_int)$coefficients[2,1])+
(summary(model_full_int)$coefficients[6,1])

slope_SSB_P <- (summary(model_full_int)$coefficients[2,1])+
(summary(model_full_int)$coefficients[5,1])+(summary(model _
full_int)$coefficients[6,1])

ggplot() +
geom_point(aes(x=het_alpha.tab$sHeteroz[het_alpha.tab

$BeachAge == "'SSB P'"], y=sqrt(het_alpha.tab$jostl _all[het_a

Ipha.tab$BeachAge == "SSB P"])),colour = "firebrick2",shape

=0, size = 2.5) +
geom_segment(aes(x = -0.25, xend = 0.18, y = (intercep
t_SSB_P+slope_SSB_P*-0.25), yend = (intercept_SSB_P+slope_S
SB_P*0.18)), size = 1 ,linetype="dotdash", colour="firebric
k2') +
geom_point(aes(x=het_alpha.tab$sHeteroz[het_alpha.tab
$BeachAge == "Freshwater P™], y=sqgrt(het_alpha.tab$jostl_al
I[het_alpha.tab$BeachAge == "Freshwater P"])),colour = "dod
gerblue3™,shape=1, size = 2.5) +
geom_segment(aes(x = -0.25, xend = 0.18, y = (interc
ept_FWB_P+slope_FWB_P*-0.25), yend = (intercept FWB_P+slope
_FWB_P*0.18)), size = 1 ,linetype="dotdash', colour="dodger
blue3™) +
geom_point(aes(x=het_alpha.tab$sHeteroz[het_alpha.t
ab$BeachAge == "'SSB M"], y=sgrt(het_alpha.tab$jostl_all[het
_alpha.tab$BeachAge == "SSB M"])),colour = "firebrick2",sha
pe=15, size = 2.5) +
geom_segment(aes(x = -0.25, xend = 0.18, y = (inte
rcept_SSB_M+slope_SSB_M*-0.25), yend = (intercept_SSB M+slo
pe_SSB_M*0.18)), size = 1 , colour="firebrick2"™) +
geom_point(aes(x=het_alpha.tab$sHeteroz[het_alpha.
tab$BeachAge == "Freshwater M"], y=sgrt(het_alpha.tab$jostl
_all[het_alpha.tab$BeachAge == "Freshwater M'])),colour = "
dodgerblue3", shape=19, size = 2.5) +
geom_segment(aes(x = -0.25, xend = 0.18, y = (int
ercept_FWB_M+slope_FWB_M*-0.25), yend = (intercept_FWB_M+sl
ope_FWB_M*0.18)), size = 1 , colour="dodgerblue3™) +
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theme_bw(base_size = 12)+

theme(panel .grid.major = element_blank(), panel.grid.
minor = element_blank())+

theme(axis.text.x = element_text(size=12), axis.title
.x = element_text(size=14),axis.text.y = element_text(size=
12),axis.title.y = element_text(size=14),plot.margin = unit
(c(-5, .5, .5, .5), "cm™))+

#scale_x_continuous(breaks=c(seq(from = -0.3, to = 0
.25, by = 0.1))) +

xlab(*'Centred sMLH™) +

ylab("'Effective no. of species (sgrt)™)
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Figure 16. Relationship between bacterial alpha diversity (effective number of
species, square root transformed) and individual heterozygosity (SMLH, centered
around the mean). Plotted are the rawdata and regression lines from the LMM
(heterozygosity regressed against alpha diversity, while controlling for breeding
colony and age and including interaction terms beach x sMLH and age x sMLH).
FWB mothers - blue filled circles and solid line, FWB pups - blue empty circles and
dashed line, SSB mothers - red filled squares and solid line, SSB pups - red empty
squares and dashed line.

We wanted to know if our results could potentially be biased by using the
non-normalised OTU table for the calculation of alpha diversity values
(despite the strong correlation observed between alpha diversity estimates
from the non-normalised and single rarefied OTU table). To this end, we
rarefied the OTU table to 10,000 reads per sample 100 times (multiple
rarefaction) using the QIIME multiple_rarefactions_even_depth.py script and
calculated alpha diversity for each of the rarefied tables. We can now
calculate LMMs for each set of alpha diversity values to see how robust the
model estimates are to rarefaction.

library(lme4)
library(MuMIn)
library(ggplot2)
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## Set the alpha diversity values for P24 and P39 to "NA"™ t
o make the analysis comparable to the muliple rarefied data
set, where these two samples are missing.

het_alpha3.tab <- het_alpha.tab
het_alpha3.tab[c(which(het_alpha3.tab$SamplelD==""P39"), whi
ch(het_alpha.tab$SamplelD==""P24')),]$jostl_all <- NA

## Run the full model as above

model_full_int_jostl all <- Imer(sqrt(jostl_all) ~ sHeteroz
+ Beach + Age + sHeteroz*Beach + sHeteroz*Age + (1|PairiD2

), data = het_alpha3.tab)

intercept_FWB_M_jla <- summary(model_full_int_jostl all)$co
efficients[1,1]

intercept_SSB M _jla <- (summary(model full_int _jostl all)$c
oefficients[1,1])+(summary(model_full_int_jostl all)$coeffi
cients[3,1])

intercept_FWB_P_jla <- (summary(model_full_int_jostl_all)$c
oefficients[1,1])+(summary(model_full_int_jostl_all)$coeffi
cients[4,1])

intercept_SSB _P_jla <- (summary(model_full_int_jostl_all)$c
oefficients[1,1])+(summary(model_full_int_jostl_all)$coeffi
cients[3,1])+(summary(model_full_int_jostl all)$coefficient
s[4.1D)

slope_FWB_M_jla <- summary(model_full_int_jostl_all)$coeffi
cients[2,1]

slope_SSB M_jla <- (summary(model_full_int_jostl_all)$coeff
icients[2,1])+(summary(model_full_int_jostl all)$coefficien
ts[5,1])

slope_FWB_P_jla <- (summary(model_full_int_jostl_all)$coeff
icients[2,1])+(summary(model_full_int_jostl_all)$coefficien
ts[6,1])

slope_SSB_P_jla <- (summary(model_full_int_jostl_all)$coeff
icients[2,1])+(summary(model_full_int_jostl_all)$coefficien
ts[5,1])+(summary(model_full_int_jostl_all)$coefficients[6,
1D

## Import the table with 100 alpha diversity estimates per

sample

multi_alpha <- read.table(./AFSmicrobiome_SI_alphaDiversit
yMultiRaref Rinput_DatasetS16.txt", header=T, sep= '"\t", ro
w.names=1, na.strings=c(""," "NA"™))

## Join the heterozygosity table (without the non-normalise
d alpha diversity estimates) and the multi estimate table
multi_alpha2 <- cbind(multi_alpha, SamplelD = row.names(mul
ti_alpha))

multi_alpha2.tab <- dplyr::left_join(het_alpha.tab[,-5], mu
Iti_alpha2, by = "SamplelD™)

## We want to plot the model results for each alpha diversi
ty estimate to get an idea about the level of uncertainty i
ntroduced through rarefying the OTU table (i.e. the robustn
ess of the observed correlation between alpha diversity and
heterozygosity).
## First, an empty data frame is created that will be fille
d with the model outputs.
model_outs <- data.frame(matrix(nrow = 8, ncol = 100))
rownames(model_outs) <- c(intercept_FWB_M", "intercept_SSB
_M™, "intercept FWB P', "intercept SSB P", "slope FWB_M", '
slope_SSB_M", "slope_ FWB_P'", "slope_SSB_P'")
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colnames(model_outs) <- as.character(c(0:99))

## For all the alpha diversity estimates run the model and
fill the data frame with the model estimates.
for(i in 0:99){
jost <- pasteO(’jost ",i)
modell <- pasteO("Imer(sqrt(",jost,") ~ sHeteroz + Beach
+ Age + sHeteroz*Beach + sHeteroz*Age + (1|PairlD2), data =
multi_alpha2.tab)"™)
model_full_int <- eval (parse(text=modell))

model_outs[which(rownames(model_outs)==""intercept FWB_M")
, which(colnames(model_outs)==i)] <- summary(model_full_int
)$coefficients[1,1]

model_outs[which(rownames(model_outs)==""intercept_SSB_M")
, which(colnames(model_outs)==i)] <- (summary(model_full_in
t)$coefficients[1,1])+(summary(model_full_int)$coefficients
[3.1D)

model_outs[which(rownames(model_outs)==""intercept FWB P')
, which(colnames(model_outs)==i)] <- (summary(model_full_in
t)$coefficients[1,1])+(summary(model_full_int)$coefficients
[4.11)

model_outs[which(rownames(model_outs)==""intercept_SSB P')
, which(colnames(model_outs)==i)] <- (summary(model_full_in
t)$coefficients[1,1])+(summary(model_full_int)$coefficients
[3,11)+(summary(model_full_int)$coefficients[4,1])

model_outs[which(rownames(model_outs)=="slope FWB M), wh
ich(colnames(model_outs)==i)] <- summary(model full_int)$co
efficients[2,1]

model_outs[which(rownames(model_outs)=="'slope_SSB M), wh
ich(colnames(model_outs)==i)] <- (summary(model_full_int)$c
oefficients[2,1])+(summary(model_full_int)$coefficients[5,1
D

model_outs[which(rownames(model_outs)=="slope_FWB_P'"), wh
ich(colnames(model_outs)==i)] <- (summary(model_full_int)$c
oefficients[2,1])+(summary(model_full_int)$coefficients[6,1
D

model_outs[which(rownames(model_outs)=="slope_SSB P'), wh
ich(colnames(model outs)==i)] <- (summary(model full_int)$c
oefficients[2,1])+(summary(model_full_int)$coefficients[5,1
D+(summary(model_full_int)$coefficients[6,1])

}

## First plot the results from the model with non-normalise
d alpha diversity estimates
hetplot <- ggplot() +

geom_point(aes(x=het_alpha3.tab$sHeteroz[het_alpha3.tab$B
eachAge == "SSB P"], y=sqrt(het_alpha3.tab$jostl all[het_al
pha3.tab$BeachAge == "SSB P""])),colour = "firebrick2",shape
=0, size = 2.5) +

geom_segment(aes(x = -0.25, xend = 0.18, y = (intercept_S
SB_P_jla+slope_SSB P _jla*-0.25), yend = (intercept SSB P_j1
a+slope_SSB_P_jla*0.18)), size = 1 ,linetype="dotdash™, col
our="firebrick2'") +

geom_point(aes(x=het_alpha3.tab$sHeteroz[het_alpha3.tab$B
eachAge == "Freshwater P"], y=sqrt(het_alpha3.tab$jostl_all
[het_alpha3.tab$BeachAge == "Freshwater P'])),colour = "dod
gerblue3",shape=1, size = 2.5) +

geom_segment(aes(x = -0.25, xend = 0.18, y = (intercept F
WB_P_jlat+slope FWB_P_jla*-0.25), yend = (intercept_FWB_P_j1
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at+slope_FWB_P_jla*0.18)), size = 1 ,linetype="dotdash", col
our="dodgerblue3™) +
geom_point(aes(x=het_alpha3.tab$sHeteroz[het_alpha3.tab$B
eachAge == "SSB M"], y=sqrt(het_alpha3.tab$jostl_all[het_al
pha3.tab$BeachAge == "SSB M"])),colour = "firebrick2",shape
=15, size = 2.5) +
geom_segment(aes(x = -0.25, xend = 0.18, y = (intercept_S
SB_M_jla+slope_SSB_M_jla*-0.25), yend = (intercept_SSB M_j1
at+slope_SSB_M_jla*0.18)), size = 1 , colour="firebrick2") +
geom_point(aes(x=het_alpha3.tab$sHeteroz[het_alpha3.tab$B
eachAge == "Freshwater M"], y=sqrt(het_alpha3.tab$jostl_all
[het_alpha3.tab$BeachAge == "Freshwater M"])),colour = "dod
gerblue3™, shape=19, size = 2.5) +
geom_segment(aes(x = -0.25, xend = 0.18, y = (intercept F
WB_M_jlat+slope FWB_M_jla*-0.25), yend = (intercept_FWB_M_j1
a+slope_FWB_M_jla*0.18)), size = 1 , colour="dodgerblue3')
+
theme_bw(base_size = 12)+
theme(panel .grid.major = element_blank(), panel._grid.mino
r = element_blank())+
theme(axis.text.x = element_text(size=12), axis.title.x =
element_text(size=14),axis.text.y = element_text(size=12),
axis.title.y = element_text(size=14),plot.margin = unit(c(.
5, .5, .5, .5), “"cm™))+
#scale_x_continuous(breaks=c(seq(from = -0.3, to = 0.25,
by = 0.1))) +
xlab("'Centred sMLH'") +
ylab("Effective no. of species (sqrt)')

## Add the results for the 100 alpha diversity estimates ca
Iculated for the multiple rarefactions using thin grey line
s
for(i in 1:100){
hetplot <- hetplot +

geom_segment(aes(x = -0.25, xend = 0.18, y = (model_outs[
"intercept_SSB P",i]+model_outs["slope_SSB P",i]*-0.25), ye
nd = (model_outs["intercept _SSB P",i]+model_outs["slope_SSB
_P",1]1*0.18)), size = 0.6, linetype="dotdash™, colour="ligh
tgrey') +

geom_segment(aes(x = -0.25, xend = 0.18, y = (model_outs[
"intercept_FWB_P",i]+model_outs["slope FWB_P",i]*-0.25), ye
nd = (model_outs["intercept_FWB_P",i]+model_outs["slope_FWB
_P",i]*0.18)), size = 0.6, linetype="dotdash™, colour="ligh
tgrey') +

geom_segment(aes(x = -0.25, xend = 0.18, y = (model_outs[
"intercept_SSB M",i]+model_outs["slope SSB M",i]*-0.25), ye
nd = (model_outs["intercept_SSB _M",i]+model_outs["'slope_SSB

_M",i]1*0.18)), size = 0.6, colour="lightgrey') +

geom_segment(aes(x = -0.25, xend = 0.18, y = (model_outs[
"intercept_FWB_M",i]+model_outs["slope FWB_M",i]*-0.25), ye

nd = (model_outs["intercept FWB_M",i]+model_outs["slope_FWB

_M",1]1*0.18)), size = 0.6, colour="lightgrey')

}

## Show plot
hetplot
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Figure 17. Relationship between bacterial alpha diversity (effective number of
species, square root transformed) and individual heterozygosity (SMLH, centered
around the mean). Plotted are the rawdata and regression lines from the LMM
(heterozygosity regressed against alpha diversity, while controlling for breeding
colony and age and including interaction terms beach x sSMLH and age x sMLH).
Light grey lines represent regression lines from 100 LMMs for which alpha diversity
was calculated for 100 rarefied OTU tables. FWB mothers - blue filled circles and
solid line, FWB pups - blue empty circles and dashed line, SSB mothers - red filled
squares and solid line, SSB pups - red empty squares and dashed line.

We can see that the estimates derived from the 100 additional models are
very similar to the original results, thus rarefying the OTU table has very little
influence on the correlation between alpha diversity and heterozygosity.
Excluding the two individuals with less than 10,000 reads (P24, P39) has a
stronger effect on the estimates but does not change the overall results.

Identity disequilibrium g2

We computed the two-locus heterozygosity disequilibrium g2, which
assesses the covariance of heterozygosity between markers and tells us
something about the correlations between heterozygosity and inbreeding. We
calculated g2 using the inbreedR package.

library(inbreedR)
library(grid)

## Calculate g2 from the genotype data

g2 <- inbreedR::g2_microsats(genos, nperm = 10000, nboot =
10000, Cl = 0.95, verbose=FALSE)

g2

it
## Data: 95 observations at 50 markers
## Function call = iInbreedR::g2_microsats(genotypes = genos
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, nperm = 10000, nboot = 10000, Cl = 0.95, verbose = FA
LSE)

HHt

## g2 = 0.001142894, se = 0.001263793

Hit

## confidence interval

H#t 2.5% 97 .5%

## -0.001145066 0.003806479

HH

## p (g2 > 0) = 0.1195 (based on 10000 permutations)

## Estimate g2 from increasing number of randomly subsample
d loci
## Define the function
resample_loc_g2 <- function(genos, niter) {
nloc <- ncol(genos)
all_g2 <- matrix(data = NA, nrow = niter, ncol = nloc-1)

for (i in 2:nloc) {
for (k in 1l:niter) {
ind <- sample(1:50, i)
gene_sub <- genos[ind]
all_g2[k, i-1] <- g2_microsats(gene_sub)$g2
}
}
all_g2
}
## Perform the resampling
resampling_g2 <- resample_loc_g2(genos, niter = 1000)
## Define a function to summerise the results
sum_results <- function(resampling_output) {
mean_cor <- apply(resampling_output,2,mean, na.rm=T)
sd_cor <- apply(resampling output,2,sd, na.rm=T)
se_cor <- sd_cor/(sqrt(nrow(resampling_output)))
sum_results <- data.frame(locnum = 1:ncol(resampling_outp
ut),
cormean = mean_cor, corsd = sd_
cor, corse = se_cor)
}
## Perform the summerising of results
results_g2 <- sum_results(resampling_g2)

## Plot the results
ggplot2::ggplot(results_g2, aes(x = locnum, y = cormean)) +
geom_line(size = 0.6, colour = "black™) +
geom_errorbar(aes(ymin = cormean-corsd, ymax = corm
ean+corsd),
width=0.8, alpha=0.7, size = 0.8, col
our = "black™) +
geom_point(size = 2, shape = 16) +
theme_bw(Q+
theme(panel .grid.major = element_blank(), panel.gri
d.minor = element_blank())+
geom_hline(yintercept = 0, linetype = 2, colour="gra
y44'")+
theme(axis.title.x = element_text(vjust= -2 ,size =
14), axis.title.y = element_text(vjust=3,size = 14), axis.
text.x = element_text(size = 12), axis.text.y = element_tex
t(size = 12)) +
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ylab(*'g2™) +
xlab(*Number of loci®™) +
labs(title = "g2 estimated from an increasing numbe

r of loci™)
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Figure 18. Estimation of the two-loci identity disequilibrium g2 from an increasing
random subset of loci.

Locus specific effects (local effects)

We also tested for possible local effects following Szulkin et al. (2010). Using
an F-ratio test we compare a model of alpha diversity containing multi locus
heterozygosity (MLH — the sum of all single locus heterozygosities over all
loci) with a model in which MLH was replaced by separate terms for the
heterozygosity of each of the 50 microsatellite loci. Local effects can be
identified if the second model explains significantly more variance than the
first model. For missing genotypes we replaced specific heterozygosity
values with the sample average.

## Calculate Heterozygozity and correlate with a-diversity

library(inbreedR)
library(dplyr)

## The header line needs to be present for this analysis (i
t was removed for the relatedness calculations).
msats <- read.table("./AFSmicrobiome_SI_MicrosatelliteGeno
types50 P22removed_colnames Rinput_DatasetS5.1.txt",header=
TRUE,row.names = 1, sep= "\t", na.strings=c(""," "NA™))
is.na(msats) <- Imsats
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## Convert to inbreedR format
genos <- inbreedR::convert_raw(msats)

## To restore column names for genos data frame use column
names from msats data frame

mnames <- colnames(msats)

## remove every second entry (in genos every marker has on
ly one column)

mnames <- mnames[seq(l, length(mnames),2)]

colnames(genos) <- mnames

## replace the missing values for each marker with the ave
rage for this marker (column average)

NA2mean <- function(x) replace(x, is.na(x), mean(xX, na.rm =
TRUE))

genosNoNA <- replace(genos, TRUE, lapply(genos, NA2mean))
## Calculate MLH as H = the sum of hi over L loci, hi = het
erozygosity at a single locus 1 (hi, coded as 0 or 1)

## and add to data frame

genosNoNA <- cbind(genosNoNA, MLH = rowSums(genosNoNA))
genosNoNA <- cbind(genosNoNA, Sample = rownames(genosNoNA))
## data frame containing alpha diversity estimates

alpha <- read.table("./AFSmicrobiome_SI_alphaDiversity_Rinp
ut_DatasetS12.txt", header = TRUE, sep = "\t")

## Only keep columns with sample names and jostl estimates
for all individuals

alpha <- subset(alpha, select=c("Sample™,"jostl_all™))

## combine both data frames

genosNoNA2 <- left_join(genosNoNA,alpha)
row.names(genosNoNA2) <- genosNoNA2$Sample

## Model 1: Regress alpha diversity on MLH using a simple r
egression

ml <- Im(Jostl_all ~ MLH, data = genosNoNA2)

summary(ml)

Hit

## Call:

## Im(formula = jostl all ~ MLH, data = genosNoNA2)
Hit

## Residuals:

Hit Min 1Q Median 3Q Max

## -48.696 -21.902 -6.108 19.626 78.700

it

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t])

## (Intercept) 161.194 41.438 3.89 0.000188 ***

## MLH -2.827 1.140 -2.48 0.014942 *

#H ——-

## Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1
-

#it

## Residual standard error: 31.18 on 93 degrees of freedom
## Multiple R-squared: 0.06203, Adjusted R-squared: O.
05194

## F-statistic: 6.15 on 1 and 93 DF, p-value: 0.01494

## Model 2: Regress alpha diversity on all single-locus het
erozygosities hi . hL, expressed as one or zero (L bein
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g the number of loci), using a multiple regression

m2 <- Im(Jostl_all ~ Pv9 + Hg6.3 + Hg8.10 + Hgl.3 + Mlla +

PvcA + Zcwb07 + Agaz2 + Ag3 + Agaz6 + OrrFCB7 + Ag2 + OrrFC
B2 + LwlO0 + ZcwcO1l + Agaz5 + ZcwCgDhB.14 + SSL301 + Ag7 + A
gtl0 + ZcwCgbh4.7 + ZcweO5 + Agl + OrrFCB8 + Agtd7 + ZcwfO7
+ ZcwD02 + ZcwCgDhl.8 + Aa4 + ZcCgbh5.8 + Agaz3 + X962.1 +
X554.6 + Zcwal2 + PvcE + Zcwb09 + agazl0 + Mang44 + Mang36
+ Zcwe03 + ZcweO4 + X101.26 + X928.4b + X507.11 + ZcwaO5 +
Zcwel2 + ZcwCgbh3.6 + Hg6.1 + Zcwcll + Lc28, data = genosN
oNA2)

summary(m2)

il

## Call:

## Im(formula = jostl_all ~ Pv9 + Hg6.3 + Hg8.10 + Hgl.3 +
Mlla +

Hit PvcA + ZcwbO7 + Agaz2 + Ag3 + Agaz6 + OrrFCB7 + Ag2
+ OrrFCB2 +

Hit Lwl0 + ZcwcO01l + Agaz5 + ZcwCgbhB.14 + SSL301 + Ag7 +
Agtl0 +

HiHt ZcwCgbh4.7 + ZcweO5 + Agl + OrrFCB8 + Agt47 + ZcwfO7
+ ZcwD02 +

HHt ZcwCgbhl1.8 + Aa4 + ZcCgbh5.8 + Agaz3 + X962.1 + X554
.6 +

Tt Zcwal2 + PvcE + Zcwb09 + agazl0 + Mang44 + Mang36 +

Zcwe03 +

it Zcwe04 + X101.26 + X928.4b + X507.11 + ZcwaO5 + Zcwe
12 +

HHt ZcwCgbh3.6 + Hg6.1 + Zcwcll + Lc28, data = genosNoNA
2)

Hit

## Residuals:

Hit Min 1Q Median 3Q Max

## -50.503 -13.478 -0.988 14.669 72.130

Hit

## Coefficients:

Hit Estimate Std. Error t value Pr(c|t])

## (Intercept) 222.4175 65.1841 3.412 0.00139 **

## Pv9 -1.7427 11.1360 -0.156 0.87636

## HQ6.3 -6.8814 13.3745 -0.515 0.60947

## Hg8.10 -5.8589 9.0555 -0.647 0.52099

## Hgl.3 -26.0757 11.0725 -2.355 0.02305 *

## Mlla -1.6963 17.1643 -0.099 0.92172

## PvcA -7.4104 12.2281 -0.606 0.54762

## Zcwb07 13.5809 13.7076 0.991 0.32722

## Agaz2 -15.8241 12.1362 -1.304 0.19906

## Ag3 8.9310 9.5723 0.933 0.35591

## Agaz6 -0.2008 9.9289 -0.020 0.98395

## OrrFCB7 -9.0776 13.0387 -0.696 0.48996

## Ag2 0.7049 11.9082 0.059 0.95307

## OrrFCB2 -4.7734 16.5496 -0.288 0.77437

## Lwl0 -4.3254 15.3805 -0.281 0.77986

## ZcwcO1l 10.0046 14.3341 0.698 0.48887

## Agazb -7.3567 9.4066 -0.782 0.43836

## ZcwCgbDhB.14  2.5961 12.1315 0.214 0.83154

## SSL301 -9.5548 15.2998 -0.625 0.53552

## Ag7 6.5474 11.0949 0.590 0.55812

## Agtl0 -8.9138 9.9231 -0.898 0.37392

## ZcwCgbDh4.7 -15.6473 12.8643 -1.216 0.23034
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## Zcwe05 -9.4434 10.6076 -0.890 0.37817
## Agl 4.0519 13.5991 0.298 0.76714
## OrrFCB8 -0.5235 10.0479 -0.052 0.95868
## Agt47 -14.9806 10.0315 -1.493 0.14248
## ZcwfO7 1.9909 11.8394 0.168 0.86723
## ZcwDO02 -5.9169 17.8801 -0.331 0.74228
## ZcwCgDhl.8 7.9141 9.8672 0.802 0.42683
## Aad -5.1714 10.4371 -0.495 0.62273
## ZcCgbh5.8 -30.7573 15.7172 -1.957 0.05672 .
## Agaz3 10.0092 8.7977 1.138 0.26140
## X962.1 -13.4975 9.3173 -1.449 0.15453
## X554.6 8.1116 12.7721 0.635 0.52865
## Zcwal2 -21.3043 13.9776 -1.524 0.13462
## PvCE -2.0696 14.3056 -0.145 0.88563
## Zcwb09 -4.4766 12.3290 -0.363 0.71827
## agazl0 10.7827 10.7365 1.004 0.32073
## Mang44 -4.1525 10.3323 -0.402 0.68971
## Mang36 -17.6256 20.9464 -0.841 0.40464
## ZcweO3 -6.4964 12.0617 -0.539 0.59288
## ZcweO4 12.5628 12.6753 0.991 0.32705
## X101.26 2.1655 11.7022 0.185 0.85404
## X928.4b -18.5645 12.6550 -1.467 0.14950
## X507.11 6.2648 9.5117 0.659 0.51356
## Zcwal5 -16.5090 15.1272 -1.091 0.28106
## Zcwel2 9.4646 12.9694 0.730 0.46940
## ZcwCgbh3.6 -20.4411 13.3432 -1.532 0.13269
## Hg6.1 -6.3384 14.0861 -0.450 0.65494
## Zcwcll -8.5377 14.0219 -0.609 0.54574
## Lc28 -9.1522 13.7173 -0.667 0.50813
HH ——-
## Signif. codes: O "***" 0.001 ***" 0.01 *"*" 0.05 "." 0.1
-
i

## Residual standard error: 31.55 on 44 degrees of freedom
## Multiple R-squared: 0.5457, Adjusted R-squared: 0.0294

## F-statistic: 1.057 on 50 and 44 DF, p-value: 0.4277

## Test whether the two models differ significantly from ea
ch other using an F-ratio test.
anova(ml,m2)

## Analysis of Variance Table

HH#

## Model 1: jostl all ~ MLH

## Model 2: jostl all ~ Pv9 + Hg6.3 + Hg8.10 + Hgl.3 + Mlla
+ PvcA + Zcwb07 +

T Agaz2 + Ag3 + Agaz6 + OrrFCB7 + Ag2 + OrrFCB2 + LwlO
+ ZcwcO1l +

Hit Agaz5 + ZcwCgbhB.14 + SSL301 + Ag7 + AgtlO0 + ZcwCgDh

4.7 +

Hit ZcweO5 + Agl + OrrFCB8 + Agt47 + ZcwfO07 + ZcwD02 + Z
cwCgbhl1.8 +

Hit Aa4 + ZcCgbh5.8 + Agaz3 + X962.1 + X554.6 + Zcwal2 +
PvcE +

Hit Zcwb09 + agazl0 + Mang44 + Mang36 + ZcweO3 + Zcwe04
+ X101.26 +

Hit X928.4b + X507.11 + ZcwaO5 + Zcwel2 + ZcwCgDh3.6 + H

g6.1 +
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Hit Zcwecll + Lc28

## Res.Df RSS Df Sum of Sq F Pr(GF)
## 1 93 90418

#t 2 44 43794 49 46624 0.956 0.5627
# Res.Df RSS Df Sum of Sq F Pr(>F)

# 1 93 90418

# 2 44 43794 49 46624 0.956 0.5627

The second model does not explain more variance than the first model, thus
we find no evidence for local effects.

PICRUst functional analysis

Lastly, we want to take a look at the potential functional capacity of the
Antarctic fur seal skin microbial communities. We run PICRUSt analysis to
obtain functional annotations for our 16S amplicon data. To evaluate the
prediction accuracy of the PICRUSt results, first the nearest sequenced taxon
index (NSTI) is calculated. The NSTI is defined as the sum of phylogenetic
distances for each organism in the OTU table to its nearest relative with a
sequenced reference genome (measured in substitutions per site and
weighted by its frequency in the OTU table). NSTI values between 0.06-0.10
indicate that the PICRUSt predictions reasonably reflect the true functional
profiles of the microbial community.

library(dplyr)

## Calculate average NSTI values overall and for each breed
ing colony to assess reliability of PICRUSt results

## Import NSTI table (output from PICRUSt)

nsti.tab <- read.table(./AFSmicrobiome_SI_NSTlvalues_filte
redTrimmed_rarefied_Rinput_DatasetS17.txt",header=TRUE, sep

= "\t", na.strings=c(""",""NA™))

colnames(nsti.tab)[which(colnames(nsti.tab) == "Sample®)] <
- "SampleNames*

## Create a data frame with beach information for each samp
le which will be merged with the nsti table

beach.tab <- subset(meta_data.tab, select=c("'Beach™, '"Age",
""SampleNames'™))

## Merge data frames

nsti.tab <- dplyr::left_join(nsti.tab, beach.tab, by = "Sam
pleNames™)

## Caluclate overall NSTI

paste("'Overall NSTI:", round(mean(nsti.tab$Value),digits=3
), "+-"", round(sd(nsti.tab$value) ,digits=3),"sd")

## [1] "Overall NSTI: 0.075 +- 0.022 sd"

paste("'Freshwater beach NSTI:",round(mean(nsti.tab[nsti.tab
$Beach==""Freshwater",]$Value) ,digits=3),"+-",round(sd(nsti.
tab[nsti . tab$Beach=="Freshwater",]$Value) ,digits=3),"sd")

## [1] "Freshwater beach NSTI: 0.083 +- 0.02 sd"
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paste(''Special study beach NSTI:", round(mean(nsti.tab[nsti
.tab$Beach=="SSB",]$Value) ,digits=3),"+-"",round(sd(nsti.tab
[nsti.tab$Beach=="SSB",]$Value) ,digits=3),"sd")

## [1] "Special study beach NSTI: 0.068 +- 0.02 sd"

paste(“'Mother NSTI:", round(mean(nsti.tab[nsti.tab$Age==""M"
,1$Vvalue) ,digits=3),"+-",round(sd(nsti.tab[nsti.tab$Age=="M
", 1$value) ,digits=3),"'sd™)

## [1] "Mother NSTI: 0.079 +- 0.02 sd"

paste("'Pup NSTI:", round(mean(nsti.tab[nsti.tab$Age=="P",]$
Value) ,digits=3),"+-",round(sd(nsti.tab[nsti.tab$Age==""P",]
$value) ,digits=3)," sd™)

## [1] "Pup NSTI: 0.072 +- 0.022 sd"

After establishing that the functional predictions should be reliable for the
Antarctic fur seal microbiome we can perform principal component analysis
with the data similar to the analysis that can be done with the STAMP
software.

library(dplyr)

## Import the table with functional predictions. The table
looks similar to the OTU table but instead for OTUs read co
unts are given for the different functional categories. Bef
ore importing the orginal output table (converted to .txt f
rom .biom) some manual adjustments were done. The first lin
e of the file as well as the "#" at the beginning of the se
cond line were deleted. Any """ symbols from the category n
ames were removed. In the header line the last column name
"KEGG_Pathways' was replace by three column names (Levell,L
evel2,Level3). All ";" were replaced by "\t".

pi.tab <- read.table("./AFSmicrobiome_SI_Categorize_by Func
tionL3_FilteredTrimmed_rarefied _Rinput DatasetS18.txt", sep
= "\t",row.names =1, header = TRUE)

## The table rownames correspond to KEGG categories at leve
I 3 (level 1-3 category names can be found in the last thre
e columns of the data frame).

## Remove rows with all O entries (Note: the last 3 columns
contain the category names at levels 1-3)

pi.tab <- pi.tab[-which(rowSums(pi.tab[,1:96])==0),]

## Transpose the table so that the sample names become the
row names

piT.tab <- t(pi.tab[,1:96])

## Log-transform and add pseudocount as above for the beta

diversity analysis

pi_log.tab <- log(piT.tab+0.0001)

## Substract the log of the pseudocount

pi_log.tab <- pi_Jlog.tab-(log(0.0001))
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## Perform principal componant analysis (PCA). Centre and s
cale the data to zero mean and unit variance.

pi_pca <- prcomp(pi_log.tab, center = TRUE, scale. = TRUE)
## Look at the variance proportions of each PC

# summary(pi_pca)

## Extract the first 3 PCS and make a new data frame
pcsL3.tab <- as.data.frame(pi_pca$x[,1:3])

## Add a column with sample names to the data frame
pcsL3.tab[""SamplelD™] <- rownames(pcsL3.tab)

## Combine the data frame with the heterozygosity table fro
m above

pcs_metal3.tab <- left_join(pcsL3.tab,het_alpha.tab, by="Sa
mplelD™)

rownames(pcs_metal3.tab) <- pcs_metal3.tab$SamplelD

## Repeat the PCA for level2 functional categories.

## Sum up all read counts at level 2 for each sample
pi_L2.tab<- aggregate(pi.tab[,1:96], by=list(Level2=pi.tab$
Level2), FUN=sum)

## Add rownames

row.names(pi_L2.tab) <- pi_L2.tab$Level2

## Remove the Level2 column (now rownames)

pi_L2.tab <- pi_L2.tab[,-(which(colnames(pi_L2.tab) == “Lev
el2"))]

## All steps as before for level 3

pi_L2T.tab <- t(pi_L2.tab)

pi_L2T_log.tab <- log(pi_L2T.tab+0.0001)

pi_L2T log.tab <- pi_L2T_log.-tab-(log(0.0001))

piL2_pca <- prcomp(pi_L2T_log.-tab, center = TRUE, scale. =
TRUE)

# summary(piL2_pca)

pcsL2.tab <- as.data.frame(pilL2_pca$x[,1:3])
pcsL2.tab["'SamplelD] <- rownames(pcsL2.tab)

pcs_metal2.tab <- left_join(pcsL2.tab,het_alpha.tab, by="Sa
mplelD™)

rownames(pcs_metal2.tab) <- pcs_metal2.tab$SamplelD

## Repeat the PCA for level2 functional categories.

## Sum up all read counts at level 2 for each sample
pi_L1.tab<- aggregate(pi.tab[,1:96], by=list(Levell=pi.tab$
Levell), FUN=sum)

row.names(pi_L1.tab) <- pi_L1l.tab$Levell

pi_Ll.tab <- pi_Ll.tab[,-(which(colnames(pi_L1l.tab) == “Lev
el1l"))]

pi_L1T.tab <- t(pi_L1.tab)

pi_L1T log.tab <- log(pi_L1T.tab+0.0001)

pi_L1T log.tab <- pi_L1T_log-tab-(log(0.0001))

piLl_pca <- prcomp(pi_L1T log.-tab, center = TRUE, scale. =
TRUE)

# summary(pilLl_pca)

pcsL1l.tab <- as.data.frame(pilLl _pca$x[,1:3])
pcsL1.tab['SamplelD™] <- rownames(pcsL1.tab)

pcs_metalLl.tab <- left_join(pcsLl.tab,het_alpha.tab, by="Sa
mplelD™)

rownames(pcs_metall.tab) <- pcs_metalLl.tab$SamplelD

library(ggplot2)
library(gridExtra)
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## Plot the PCA results for level 3
L3 PC12 <- ggplot(pcs_metal3.tab, aes(x=PCl, y=PC2))+

geom_point(size=3.5, stroke=1, aes(colour=B
eachAge, shape=BeachAge))+

scale_color_manual (values = c("'dodgerblue3™
,''"dodgerblue3","firebrick2","firebrick2™),name="",breaks=c(
"Freshwater M, "Freshwater P, "SSB M", "SSB P'), labels=c
(""FWB mothers"™,"FWB pups', '"'SSB mothers', "SSB pups'))+

scale_shape_manual (values = ¢(19,1,15,0), n
ame=""", breaks=c(‘''Freshwater M", "Freshwater P, "SSB M, *
SSB P'™), labels=c("'FWB mothers","FWB pups', ''SSB mothers",
"SSB pups™))+

theme_bw(Q+

theme(legend.position=c(0.16,0.16),legend.t
itle = element_blank(), legend.background = element_rect(siz
e=0.3, linetype="solid"”, colour ="black™))+

theme(panel .grid.major = element_blank(), p
anel .grid.minor = element_blank())+

labs(x = "PC1 (61.3% explained variability)
",y = "PC2 (13.7% explained variability)')+

theme(axis.title.y=element_text(size=12), a
xis.title.x = element_text(size=12), axis.text.x=element_ t
ext(size=10), axis.text.y = element_text(size=10))

L3_PC13<-ggplot(pcs_metal3.tab, aes(x=PCl, y=PC3))+

geom_point(size=3.5, stroke=1, aes(colour=B
eachAge, shape=BeachAge))+

scale_color_manual (values = c("'dodgerblue3™
,'"dodgerblue3","firebrick2","firebrick2™),name=""",breaks=c(
“"Freshwater M, "“Freshwater P', "SSB M", "SSB P'), labels=c
(""FWB mothers"™,"FWB pups', *"'SSB mothers', "SSB pups'))+

scale_shape_manual (values = c¢(19,1,15,0), n
ame=""", breaks=c(''Freshwater M", "Freshwater P, "SSB M", "
SSB P'™), labels=c("'FWB mothers™,"FWB pups', ''SSB mothers,
"SSB pups'))+

theme _bw(Q)+

theme(legend.position="none')+

theme(panel .grid.major = element_blank(), p
anel .grid.minor = element_blank())+

labs(x = "PC1 (61.3% explained variability)
", ¥y = "PC3 (5.6% explained variability)™)+

theme(axis.title.y=element_text(size=12), a
xis.title.x = element_text(size=12), axis.text.x=element_ t
ext(size=10), axis.text.y = element_text(size=10))

grid.arrange(L3_PC12, L3 _PC13, ncol=2)
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Figure 19. Principal component analysis of PICRUSt functional predictions at
hierachical level 3.

library(ggplot2)
library(gridExtra)

## Plot the PCA results for level 2
L2_PCl2<-ggplot(pcs_metal2.tab, aes(x=PCl, y=PC2))+

geom_point(size=3.5, stroke=1, aes(colour=B
eachAge, shape=BeachAge))+

scale_color_manual (values = c("'dodgerblue3™
,''"dodgerblue3","firebrick2","firebrick2™),name=""",breaks=c(
"Freshwater M, “Freshwater P', "SSB M, "SSB P'), labels=c
(""FWB mothers"™,"FWB pups', '"'SSB mothers', "SSB pups'))+

scale_shape_manual (values = ¢(19,1,15,0), n
ame=""", breaks=c(''Freshwater M", "Freshwater P, "SSB M", "
SSB P'™), labels=c("'FWB mothers™","FWB pups', ''SSB mothers",
""SSB pups'))+

theme_bw(Q+

theme(legend.position="none")+

theme(panel .grid.major = element_blank(), p
anel _grid.minor = element_blank())+

labs(x = "PC1 (78.0% explained variability)
",y = "PC2 (12.0% explained variability)')+

theme(axis.title.y=element_text(size=12), a
xis.title.x = element_text(size=12), axis.text.x=element t
ext(size=10), axis.text.y = element_text(size=10))

L2 PC13<-ggplot(pcs_metal2.tab, aes(x=PCl, y=PC3))+

geom_point(size=3.5, stroke=1, aes(colour=B
eachAge, shape=BeachAge))+

scale_color_manual (values = c("'dodgerblue3"
,""dodgerblue3","firebrick2","firebrick2™),name=""",breaks=c(
"Freshwater M", "Freshwater P', "SSB M", "SSB P'), labels=c
(""FWB mothers"™,"FWB pups', *'SSB mothers'™, "SSB pups'))+

scale_shape_manual (values = c¢(19,1,15,0), n
ame=""", breaks=c(''Freshwater M", "Freshwater P, "SSB M", "
SSB P'™), labels=c("'FWB mothers™","FWB pups', 'SSB mothers',
"SSB pups'))+

theme_bw()+

theme(legend.position=c(0.84,0.84),legend.t
itle = element_blank(), legend.background = element_rect(siz
e=0.3, linetype="solid", colour ="black'))+

theme(panel .grid.major = element_blank(), p
anel .grid.minor = element_blank())+
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labs(x = "PC1 (78.0% explained variability)
",y = "PC3 (3.5% explained variability)'™)+

theme(axis.title.y=element_text(size=12), a
xis.title.x = element_text(size=12), axis.text.x=element_t
ext(size=10), axis.text.y = element_text(size=10))

grid.arrange(L2_PC12, L2 PC13, ncol=2)
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Figure 20. Principal component analysis of PICRUSt functional predictions at

hierachical level 2.

library(ggplot2)
library(gridExtra)

## Plot the PCA results for level 1
L1 _PCl2<-ggplot(pcs_metall.tab, aes(x=PCl, y=PC2))+

geom_point(size=3.5, stroke=1, aes(colour=B
eachAge, shape=BeachAge))+

scale_color_manual (values = c("'dodgerblue3™
,'"dodgerblue3","firebrick2","firebrick2™),name=""",breaks=c(
"Freshwater M, “Freshwater P', "SSB M, "SSB P'), labels=c
(""FWB mothers","FWB pups', '"'SSB mothers', "SSB pups'))+

scale_shape_manual (values = c¢(19,1,15,0), n
ame=""", breaks=c(''Freshwater M", "Freshwater P, "SSB M", "
SSB P'™), labels=c("FWB mothers","FWB pups', "'SSB mothers",
""SSB pups'™))+

theme_bw(Q+

theme(legend.position="none")+

theme(panel .grid.major = element_blank(), p
anel .grid.minor = element_blank())+

labs(x = "PC1 (92.1% explained variability)
", ¥y = "PC2 (5.5% explained variability)™)+

theme(axis.title.y=element_text(size=12), a
xis.title.x = element_text(size=12), axis.-text.x=element_t
ext(size=10), axis.text.y = element_text(size=10))

L1 PC13<-ggplot(pcs_metall.tab, aes(x=PCl, y=PC3))+

geom_point(size=3.5, stroke=1, aes(colour=B
eachAge, shape=BeachAge))+

scale_color_manual (values = c("'dodgerblue3"
,''"dodgerblue3", " firebrick2","firebrick2™),name=""",breaks=c(
"Freshwater M", "Freshwater P', "SSB M", "SSB P'), labels=c
(""FWB mothers™,"FWB pups', '"'SSB mothers', "SSB pups'™))+

scale_shape_manual (values = ¢(19,1,15,0), n
ame=""", breaks=c("'Freshwater M, "Freshwater P', "'SSB M, '
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SSB P™M),
""SSB pups'))+

theme_bw(Q+

labels=c("'"FWB mothers","FWB pups', ''SSB mothers",

theme(legend.position=c(0.16,0.16),legend.t
itle = element_blank(), legend.background = element_rect(siz
e=0.3, linetype="solid", colour ="black™))+

theme(panel .grid.major = element_blank(), p
anel _grid.minor = element_blank())+

labs(x = "PC1 (92.1% explained variability)
",y = "PC3 (1.0% explained variability)™)+

theme(axis.title.y=element_text(size=12), a
xis.title.x = element_text(size=12), axis.text.x=element t
= element_text(size=10))

ext(size=10), axis.text.y

grid.arrange(L1_PC12, L1_PC13, ncol=2)
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Figure 21. Principal component analysis of PICRUSt functional predictions at

hierachical level 1.
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