

Genetic diversity and demography of two endangered captive pronghorn subspecies from the Sonoran Desert

ANASTASIA KLIMOVA,* ADRIAN MUNGUIA-VEGA, JOSEPH I. HOFFMAN, AND MELANIE CULVER

Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, Expropiación Petrolera SN, Tecnológico, Fondo Legal, 23080 La Paz, Baja California Sur, Mexico (AK)

Conservation Genetics Laboratory, School of Natural Resources and Environment, BSE-317, University of Arizona, Tucson, AZ 85721, USA (AM-V)

Comunidad y Biodiversidad, A.C. Isla del Peruano 215, Col. Lomas de Miramar, 85448, Guaymas, Sonora, Mexico (AM-V)

Centro de Investigaciones Biológicas del Noroeste S.C. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita, La Paz, Baja California Sur, Mexico (AM-V)

Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33501 Bielefeld, Germany (JIH)

United States Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, Conservation Genetics Laboratory, School of Natural Resources and Environment, BSE-325, University of Arizona, Tucson, AZ 85721, USA (MC)

* Correspondent: aklimova@uabcs.mx

Species that have experienced population reduction provide valuable case studies for understanding genetic responses to demographic change. Pronghorn (*Antilocapra americana*) were once widespread across the North American plains but were subject to drastic population reductions due to overexploitation and habitat fragmentation during the late 19th and early 20th centuries. *A. a. peninsularis* and *A. a. sonoriensis*, 2 pronghorn subspecies that inhabit the southern edge of the species' distribution, are almost extinct and now breed almost exclusively in captivity. We therefore sequenced the complete mitochondrial control region and genotyped 18 microsatellite loci in 109 individuals to evaluate the impact of population bottlenecks, captive breeding, small population sizes, and isolation on the genetic composition of captive populations of these 2 subspecies. We found extremely low levels of genetic diversity in both subspecies. The 2 subspecies showed high and significant genetic differentiation, indicating the absence of historic and recent gene flow despite their geographic proximity within the Sonoran Desert. Historical effective population size estimates for the 2 subspecies were inferred to be similar, whereas the Sonoran pronghorn has a contemporary effective size (N_e) more than twice as high as the Peninsular subspecies. Our findings suggest the need for careful genetic management of both subspecies in order to minimize the further loss of genetic variability.

Key words: *Antilocapra americana*, captive breeding, genetic diversity, population differentiation, Sonoran Desert

© 2014 American Society of Mammalogists

DOI: 10.1644/13-MAMM-A-321

Populations and subspecies inhabiting the edges of a species' distribution can be important because they often exhibit lower genetic diversity and greater genetic differentiation from central populations due to extended geographic isolation, small effective population sizes (N_e s), and the effects of population bottlenecks and drift (Johannesson and André 2006; Eckert et al. 2008). Additionally, peripheral populations are of conservation and management concern because they have a greater likelihood of suffering from a local extinction in the short term (Frankham et al. 2002). It has been widely recognized that the rate of species extinction is increasing and that many species are in imminent

danger of extinction. Anthropogenic exploitation, habitat degradation and fragmentation, and the introduction of nonnative species (such as pathogens, parasites, predators, and competitors) have been identified as major factors responsible for these extinctions and declines (Wilson 2010).

The New World family Antilocapridae has only 1 extant species, the pronghorn (*Antilocapra americana*). Nevertheless,

there are fossil records of at least 18 genera dating back to around 20 million years ago (early Miocene—McKenna and Bell 1997; Heffelfinger et al. 2004). The pronghorn represents a unique evolutionary branch within the ungulate clade Pecora (Hassanin et al. 2012). It has therefore been the subject of extensive research dealing with its basic biology, ecology, taxonomy, and management, as well as with its long and intricate interactions with humans (McCabe et al. 2004; O’Gara and Yoakum 2004). Four pronghorn subspecies are currently recognized, which are distributed across the western United States, southern Canada, and northern Mexico: *A. a. americana* (American), *A. a. mexicana* (Mexican), *A. a. sonoriensis* (Sonoran), and *A. a. peninsularis* (Peninsular). Peninsular and Sonoran subspecies are listed as endangered and are legally protected in Mexico and in the United States (Endangered Species Act [United States Fish and Wildlife Service 1973; Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) 2010]).

Like many other large North American herbivore species, pronghorn have been subjected to overexploitation and range-wide habitat destruction (Brown and Ockenfels 2007). Historically, pronghorn herds were found in the United States west of the Mississippi River and across much of northern Mexico. However, by the late 1800s, pronghorn populations were drastically reduced to small isolated groups (Yoakum 1975). Even though the historical numbers of pronghorn roaming the North American plains are still debated, they probably exceeded 40 or 60 million (Nelson 1925). It was estimated the species as a whole lost around 70% of its habitat (Laliberte and Ripple 2004), whereas some subspecies lost up to 90% (Cancino et al. 1998). As a result, fewer than 20,000 animals remained at the beginning of the 20th century (O’Gara and Yoakum 2004; SEMARNAT 2009).

The Peninsular and Sonoran subspecies inhabit separate areas of the Sonoran Desert, which represents the southern periphery of the pronghorn’s main geographic distribution (Medellin et al. 2005). Historically, the distributional ranges of these subspecies are thought to have overlapped in a small area of northeastern Baja California, Mexico, near San Felipe (Fig. 1). Survey numbers for the 2 pronghorn subspecies from the Sonoran Desert have been fluctuating between 20 and 150 animals over the past few decades, which led to the creation of captive breeding herds for both subspecies (Cancino et al. 2005; Otte 2006; United States Fish and Wildlife Service 2010; Wilson et al. 2010). Table 1 summarizes some recent events affecting these pronghorn subspecies and the numbers of animals taken into captivity (Cancino et al. 1994, 1998, 2005; Otte 2006; SEMARNAT 2009; USFWS 2010; Wilson et al. 2010; V. Sánchez Sotomayor, Área de Protección de Flora y Fauna Valle de los Cirios, pers. comm. 2012).

Previous genetic analyses of pronghorn populations have focused on American, Mexican, and Sonoran pronghorn (Lee et al. 1989, 1994; Rhodes et al. 2001; Stephen et al. 2005a, 2005b). The Peninsular subspecies, however, appears to have been largely overlooked. Although Brown (2006) argues that the taxonomic status of the pronghorn subspecies is based on

obsolete criteria, current subspecies definitions of pronghorn, although not clearly resolved, have had a profound effect on reintroductions, translocations, and conservation decisions in the United States and in Mexico (Stephen et al. 2005a). Lee et al. (1994), using protein and mitochondrial DNA (mtDNA) restriction fragment length polymorphism analyses, were among the first to question the subspecific status of the Oregon pronghorn (*A. a. oregonia*). Another study (Lou 1998) determined that the Sonoran subspecies was not highly differentiated from American pronghorn populations in Texas or Arizona. Stephen et al. (2005a) found that the Sonoran populations in the United States and Mexico were significantly differentiated at 5 microsatellites ($F_{ST} = 0.073$), but still more related than any other pair of populations (F_{ST} range = 0.104–0.205), suggesting a closer relationship between them. More recently, Theimer et al. (2012) used microsatellites to show that the genetic composition of pronghorn herds is highly influenced by highways, which can act as a barrier to contemporary gene flow.

To our knowledge, no peer-reviewed studies have been published on the population genetics of the Peninsular pronghorn. Consequently, the data needed to make important decisions regarding reintroductions, translocations, breeding, and management are lacking. We therefore sought to elucidate the status of the 2 pronghorn subspecies within captive programs in the Sonoran Desert regarding genetic diversity, inbreeding, N_e s, and genetic differentiation. Our goal was to obtain an improved understanding of the demographic processes responsible for the present-day genetic composition of these subspecies, as well as to provide baseline data to inform effective management and conservation.

MATERIALS AND METHODS

Sample locations and collection.—We collected a total of 109 pronghorn samples, 64 for *A. a. sonoriensis* and 45 for *A. a. peninsularis*. This sample size represents approximately 5–10% of each subspecies’ total population size. Feces and skin tissue for the Peninsular pronghorn, and buccal swab and blood samples for the Sonoran pronghorn, were used as DNA sources. In the case of the Peninsular subspecies, all of the samples were collected during 2012 from a captive breeding herd within the Vizcaino Biosphere Reserve, Baja California Sur, Mexico, at La Choya Peninsula. We collected a minimum of 10 fecal pellets per individual. Only freshly deposited pellets were sampled when defecation was observed by 3 people to minimize the risk of inadvertently sampling multiple individuals. All samples were placed in labeled sterile paper bags, stored in a cooler, dried overnight, and transported to the laboratory, where they were kept at -20°C . Tissue samples were taken from the ears of fawns that died during the first 5 weeks after birth. Each sample was stored in 95% ethanol at room temperature. The Sonoran pronghorn samples were collected in 2010 and 2011 from captive animals at Cabeza Prieta National Wildlife Refuge, Arizona. Oral swabs and ~ 0.5 ml of blood were preserved in an equal

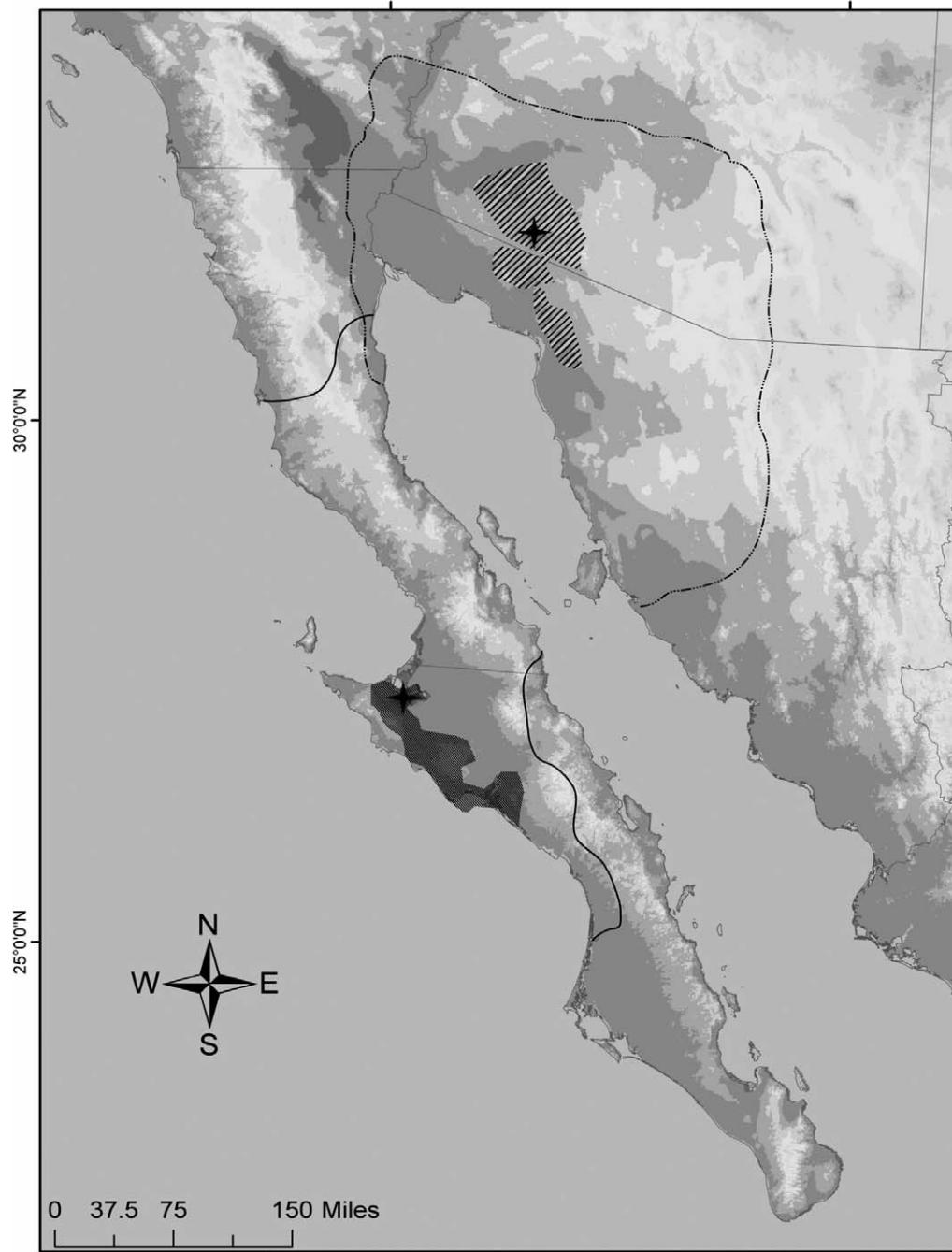


FIG. 1.—Historical and current distribution of the 2 pronghorn subspecies, *Antilocapra americana peninsularis* and *A. a. sonoriensis*, from the Sonoran Desert and sampling locations. The dotted line delineates the historical distribution of *A. a. sonoriensis*, and the hatched area its current range. Solid black lines mark the historical limits of *A. a. peninsularis* and the black area shows the current distribution. Modified from Cancino et al. (1998) and United States Fish and Wildlife Service (2010).

amount of STE buffer (0.1 m NaCl, 0.05 m Tris-HCl, pH 7.5, and 0.001 m ethylenediaminetetraacetic acid) at -20°C . All sampling of pronghorn individuals followed guidelines of the American Society of Mammalogists (Sikes et al. 2011) and animal protocols were approved by local authorities (V. Sánchez Sotomayor, Área de Protección de Flora y Fauna Valle de los Cirios, and J. Atkinson, United States Fish and Wildlife Service and Leader of the Sonoran pronghorn recovery team).

Molecular techniques.—Total DNA was extracted from 23 tissue and 22 fecal samples of the Peninsular pronghorn and 34 swab and 30 blood samples of the Sonoran pronghorn. For tissue, blood, and swab samples we used a DNeasy Blood & Tissue Kit (Qiagen Inc., Valencia, California) following the manufacturer's recommended protocols. DNA was extracted from fecal samples using a QIAamp DNA Stool Kit (Qiagen Inc.). The manufacturer's protocol was followed except for a minor modification to the wash step,

TABLE 1.—Important dates, events, and approximate numbers of Sonoran and Peninsular pronghorn (*Antilocapra americana peninsularis* and *A. a. sonoriensis*, respectively) individuals during the 20th and 21st centuries.

Subspecies	Date	Population size/events
<i>A. a. sonoriensis</i>	1920	100
	1994	282 animals, followed by steady population decline
	2002	21 individuals, severe drought in the Sonoran Desert
	2002	Recovery actions (i.e., forage enhancements, development of water sources, and construction of a captive-breeding pen)
	2006	Captive population started from 3 adults from Sonora, Mexico (1 male) and 11 adults from Arizona (2 males) captured during 2004–2006
	2007	Mexican population 360 individuals
	2009	United States captive and wild population of 131 animals
	1970s	Average 72 individuals
	1980s	Average 58 individuals
	1990–1996	Average 85 individuals
<i>A. a. peninsularis</i>	1997	59 individuals in the wild
	1997	Start of captive breeding program in the Vizcaino Biosphere Reserve
	1998	First 5 wild animals captured
	2000	First captive births
	2003	90 animals in captivity from 16 wild fawns and 9 wild adults captured during 1998–2003
	2012	400 captive population and 50 wild population

for which we washed 5 or 6 fecal pellets for 15 min in 5 ml of the stool lysis buffer (ASL). To maximize the yield of the DNA, we performed the final step twice, using 75 μ l of buffer each time.

To sequence the complete mitochondrial control region, we designed 4 sets of primers (Table 2) using CLC Genomic Workbench 5.0.1. (CLC Bio, Aarhus, Denmark). The combinations of these primers were sequenced and subsequently aligned to render the complete control region of the pronghorn (Hassanin et al. 2012). Each polymerase chain reaction was carried out in a 25- μ l volume containing 1 μ l of the DNA template for blood, tissue, and swab samples or 3 μ l for feces. Each polymerase chain reaction contained: 1X buffer (Invitrogen, Carlsbad, California), 1 mM MgCl₂, 0.2 mM deoxynucleoside triphosphates, 0.05% bovine serum albumin, 0.5 U of Taq DNA Polymerase (Invitrogen), and 0.5 μ M of each primer. The polymerase chain reaction profile consisted of an initial denaturalization step at 95°C for 5 min, followed by 35 cycles of 60 s each at 95°C and 58–60°C followed by 60 s at 72°C. Cycles were terminated with a final extension of 10 min at 72°C. A negative control lacking any DNA was included in each set of polymerase chain reactions to detect any potential contamination. Polymerase chain reaction products were sequenced in both directions on a 3730 Automated DNA Analyzer (Applied Biosystems, Foster City, California), using

the BigDye Terminator Cycle Sequencing kit version 3.1 at the University of Arizona Genetics Core. The sequences were edited and the forward and reverse strands aligned to one another using SEQUENCHER 4.9 (Gene Codes Corporation, Ann Arbor, Michigan).

Fourteen microsatellite loci developed specifically for Sonoran and Peninsular pronghorn (Munguia-Vega et al. 2013) were amplified for 32 and 23 individuals of Sonoran and Peninsular subspecies, respectively. Four additional loci (*Aam2*, *Aam3*, *Aam7*, and *Aam8*) were chosen, based on levels of their variability and previous successful use in *A. a. americana* (Carling et al. 2003). Each polymerase chain reaction was carried out in a 15- μ l volume with 20–40 ng of genomic DNA, 1X polymerase chain reaction buffer, 0.2 mM of each deoxynucleoside triphosphate, 1.5 mM of MgCl₂, 0.2% bovine serum albumin, 0.5 U Taq DNA polymerase (Invitrogen), 0.02 μ M of the unlabeled M13-tailed forward primer, 0.2 μ M of the fluorescently labeled M13 primer, and 0.2 μ M of the reverse primer. The polymerase chain reaction conditions are described elsewhere (Munguia-Vega et al. 2013). The 4 additional microsatellite loci were amplified with the protocol and thermal profile of Carling et al. (2003). Polymerase chain reaction fragments were resolved on an Applied Biosystems 3730XL and alleles were scored using GENOTYPER 3.7 (Applied Biosystems).

TABLE 2.—List of newly designed primers for the amplification of the complete pronghorn (*Antilocapra americana peninsularis* and *A. a. sonoriensis*) mitochondrial control region.

Primer name	Sequence	Primer size (base pairs)	Position on the pronghorn mitochondrial genome (Hassanin et al. 2012)
AnamF1	5'-ATTAATCGTGGGGTAGC-3'	18	15826–15843
AnamR1	5'-TCAGGTGGACTTAAAGGG-3'	18	161–144
AnamF2	5'-AAACCAAGAAAAGGAGAACGA-3'	20	15333–15352
AnamR2	5'-AAATATCTAGGGATGAGCGT-3'	20	16267–16248
AnamF3	5'-CAATAGCCCCACTTCAAC-3'	19	15381–15399
AnamR3	5'-TAAGAGGAAAGAGTGGACG-3'	19	15920–15902
AnamF4	5'-CGAACAAACCTACCAAAC-3'	19	15491–15509
AnamR4	5'-CGCCGTATTCTATTAACT-3'	19	354–336

Genetic diversity.—For the control region sequences, we calculated the number of unique haplotypes, haplotype frequencies, the number of polymorphic sites, numbers of transitions and transversions, haplotype diversity (h), and nucleotide sequence diversity (π) using DnaSP version 5 (Librado and Rozas 2009).

Microsatellite alleles were binned and scored using FLEXIBIN (Amos et al. 2007). Micro-checker 2.2.3 (Van Oosterhout et al. 2004) was used to test for genotyping errors and the presence of null alleles. Deviation from Hardy–Weinberg expectations and linkage equilibrium among loci were tested using Genepop 4.1.3 (Rousset 2008) and Fstat version 2.9.3 (Goudet 1992), respectively. The resulting P -values were corrected for multiple testing using sequential Bonferroni correction for multiple comparisons using alpha = 0.05 (Rice 1989).

Genetic variability was assessed for each population as the proportion of polymorphic loci, the mean number of alleles (allelic diversity [A]), the effective number of alleles (A_e), allelic richness (A_r), the presence and number of private alleles, observed heterozygosity (H_O), and expected heterozygosity (H_E). These were calculated using Fstat version 2.9.3 (Goudet 1992), GENETIX 4.05 (Belkhir et al. 1996–2004), and GENALEX 6.1 (Peakall and Smouse 2006). We also calculated Wright's inbreeding coefficient (F_{IS} —Weir and Cockerham 1984) using Fstat and estimates of pairwise relatedness and inbreeding as implemented in COANCESTRY version 1.0 (Wang 2011). We used different methods described by Wang (2011) in COANCESTRY to estimate pairwise relatedness between individuals and TrioML (Wang 2007) and DyadML (Milligan 2003) to estimate individual inbreeding coefficients. This strategy was used in order to evaluate the degree of discordance between different estimators, using the correlation methods implemented by COANCESTRY.

Population structure and genetic differentiation.—The limited number of phylogenetically informative sites in our samples precluded an unambiguous phylogenetic reconstruction. However, the relationships between haplotypes were assessed by constructing minimum spanning networks using TCS 1.21 software (Clement et al. 2000) at the default 95% connection limit. Analyses of molecular variance (AMOVAs) incorporating both Φ_{ST} and F_{ST} (Weir and Cockerham 1984) were used to investigate differentiation between the subspecies (Excoffier et al. 1992). The statistical significance of these values was tested through permuting the data 10,000 times in Arlequin version 3.0 (Excoffier et al. 2005).

For the microsatellite data, we used several test statistics based on allele identity and allele size to determine genetic divergence between the subspecies: F_{ST} (Weir and Cockerham 1984); Nei's unbiased genetic distance (D_S —Nei 1978), G_{ST} (Pons and Petite 1996), and R_{ST} (Goldstein et al. 1995). All of these distance measures were calculated using the software Spagedi version 1.0 (Hardy and Vekemans 2002). Significance was evaluated based on 10,000 permutations. STRUCTURE version 2.3.3 (Pritchard et al. 2000; Hubisz et al. 2009) was used to test for genetic structure among all of the pronghorn

individuals without knowledge of the subspecies to which they belong. To determine the number of clusters (K) present within the data set, 10 independent simulations for each value of K between 1 and 3 were run with 100,000 burn-in iterations followed by 500,000 iterations. We used the admixture model and allele frequencies were assumed to correlate among populations.

Tests for reductions in population size.—We employed 2 programs capable of detecting genetic signatures of population declines. BOTTLENECK 1.2.0.2 (Cornuet and Luikart 1996; Piry et al. 1999) tests across all the loci for a significant observed heterozygosity excess (H_E) caused by the quick loss of rare alleles after a population reduction relative to the heterozygosity expected in a population at equilibrium (H_{EQ}), a signature of a recent bottleneck (Cornuet and Luikart 1996; Piry et al. 1999). For this analysis, we choose the 2-phase model because this accounts for occasional “jump” mutations of several repeat units that can occur during microsatellite evolution (Schlotterer et al. 1998). We evaluated four 2-phase models, with 1%, 5%, 10%, and 30% multistep mutations using a default variance of 30. The number of loci for which H_E was greater than H_{EQ} was determined and statistical significance was tested using standardized differences and Wilcoxon signed ranks tests. To detect more ancient genetic bottlenecks, we calculated the M -ratio of Garza and Williamson (2001). The number of alleles declines faster than the range in allele size during a bottleneck due to chance sampling effects. Accordingly, the M -ratio is expected to be smaller in bottlenecked populations than in equilibrium populations. To determine significance, the mean observed M -ratio across loci is compared with an expected distribution generated from simulations under mutation–drift equilibrium, as implemented in CRITICAL_M (Garza and Williamson 2001). The critical M -ratio (M_C) was calculated using 10,000 simulations under 1-step mutations (ps) and the average size of multistep mutations (Δg) parameters set to 80% and 3.5, respectively, as suggested by Peery et al. (2012). The θ parameter was estimated using a mutation rate of 0.00011 (Crawford and Cuthbertson 1996) and a range of potential historical N_e -values (100, 200, 500, 1,000, and 2,000) expressing previous population sizes when these pronghorn subspecies were more widespread.

Estimation of current effective population size.—The N_e can be used to predict the rate of loss of neutral genetic variation, fixation of deleterious and favorable alleles, and the rate of increase of inbreeding experienced by a population. It is therefore a central concept in evolutionary biology (Wright 1931) and conservation genetics (Mace and Lande 1991; Frankham 1996) because it can help predict the extinction risk of populations. Genetic estimates of the current N_e of the 2 pronghorn subspecies were calculated using various methodological approaches to assess the robustness of the results. First a method based on linkage disequilibrium was used to estimate contemporary N_e from a single temporal sample, as implemented in the software LDNe (Waples 2006; Waples and Do 2008) and Ne-estimator (Hill 1981; Ovenden et

TABLE 3.—Positions of the 7 variable sites within the 906-base pair consensus segment of the pronghorn (*Antilocapra americana peninsularis* and *A. a. sonoriensis*) mitochondrial DNA control region, defining the 6 unique haplotypes and their frequency in the 2 pronghorn subspecies. Dots (·) indicate identity to the top sequence and dashes (—) indicate insertion–deletion mutations.

Subspecies	Frequency	Haplotype	Position						
			60	61	240	258	279	658	727
<i>A. a. sonoriensis</i>	45	Anas1	—	—	C	T	T	T	—
<i>A. a. sonoriensis</i>	5	Anas2	—	—	T	·	·	·	—
<i>A. a. sonoriensis</i>	12	Anas3	—	—	T	·	·	·	T
<i>A. a. sonoriensis</i>	2	Anas6	—	—	T	C	·	·	T
<i>A. a. peninsularis</i>	33	Anap4	—	—	T	·	C	·	—
<i>A. a. peninsularis</i>	12	Anap5	A	A	T	·	C	—	—

al. 2007). The principle of the linkage disequilibrium method is that as N_e decreases, genetic drift generates nonrandom associations among alleles at different loci (Hill 1981; Waples 1991a). LDNe was run excluding allele frequencies of less than 0.01 and assuming random mating (Waples 2006). Another approach widely used to estimate N_e from a single temporal sample is based on an approximate Bayesian computation framework, as implemented in ONESAMP 1.1 (Tallmon et al. 2004, 2008). In contrast to linkage disequilibrium–based approaches, the ONESAMP N_e estimator combines 8 summary statistics: the M -ratio, the difference between the natural logarithms of variance in allele length and heterozygosity, H_E , number of alleles per locus, Wright's F_{IS} , the mean and variance of multilocus homozygosity, and the square of the correlation of alleles at different loci based on linkage disequilibrium (Tallmon et al. 2008). The use of multiple summary statistics potentially improves accuracy and precision but this approach has not yet been thoroughly evaluated (Luikart et al. 2010). Bayesian estimates were produced based on uniform N_e priors between 5 and 1,000. Finally, the sibship-based method infers N_e from sibship frequencies using COLONY 2.0.3.3 (Wang 2009). Comparisons based on empirical data (Beebee 2009) suggest that Wang's sibship method performs better than heterozygote excess and linkage disequilibrium methods in respect to most of the criteria tested (insensitivity to locus number, correlation with other effective- and census-size estimates, and correlation with genetic diversity).

Historical population dynamics.—Long-term N_e s were estimated from microsatellite data for each subspecies using Migrate 3.3.1 (Beerli and Felsenstein 2001; Beerli 2008) based on a maximum-likelihood approach. Migrate uses coalescent theory to estimate the relative effective population size θ ($4N_e\mu$, where N_e is effective population size and μ is mutation rate) and asymmetric gene flow M (m/μ) between pairs of populations (approximately $4N_e$ generations in the past—Beerli 2008) over long periods of time (approximately thousands of years). Three maximum-likelihood runs were conducted using a Brownian-motion model. The initial run used an estimate of F_{ST} as a starting parameter to calculate θ and M and each subsequent run used the maximum-likelihood estimates from

TABLE 4.—Comparative haplotype (h) and nucleotide diversity (π) of the Peninsular and Sonoran pronghorn subspecies (*Antilocapra americana peninsularis* and *A. a. sonoriensis*). n = sample size; H = number of haplotypes; h = haplotype diversity; π = nucleotide diversity.

Subspecies	n	H	h	π
<i>A. a. sonoriensis</i>	64	4	0.47	0.00054
<i>A. a. peninsularis</i>	45	2	0.40	0.0
Total	109	6	0.7178	0.00113

the previous run as new starting parameters. As suggested by authors, 4-chain heating at temperatures of 1, 1.5, 3, and 1,000,000 were implemented to increase the efficiency of the Markov chain Monte Carlo analysis (Beerli 2006, 2009). The first 2 runs were shorter (10 short chains of 50,000 sampled, 500 recorded, and 5 final long chains of 500,000 sampled, 5,000 recorded), then a final longer run was performed (10 short chains of 10,000 sampled, 500 recorded, and 5 final chains of 500,000 sampled, 25,000 recorded). Because parameter estimates from the final run were similar to the results from the shorter runs, we assumed that the final run had converged and we present results from this final run. To estimate N_e from θ , we used a mutation rate of 0.000011 (Crawford and Cuthbertson 1996).

RESULTS

Genetic diversity.—A 906-base pair fragment of the mitochondrial control region was successfully amplified in 45 and 64 Peninsular and Sonoran pronghorn individuals, respectively. Seven polymorphic sites and 6 unique haplotypes were identified (Table 3). Three of the mutations identified were transition substitutions and 4 were insertion–deletions (indels). No shared haplotypes were found between the 2 subspecies. For Sonoran pronghorn, we found 4 haplotypes; the most frequent haplotype (denoted Anas1) being shared among 45 individuals (70.3%). Among 45 Peninsular pronghorn, we detected 2 haplotypes, the most common of which (Anap4) was found in 33 individuals (73.3%). The average number of nucleotide differences between the subspecies was 1.73. Because most haplotypes differ by 1 nucleotide position, the mean sequence divergence between haplotypes was low (0.1%) with a maximum of 0.2% between the Sonoran and Peninsular subspecies. Estimates of haplotype and nucleotide diversities are shown in Table 4. The 2 haplotypes found in the Peninsular pronghorn differed by only 3 indels, leading to a lack of nucleotide diversity. Sequences representing all 6 haplotypes have been deposited in GenBank (accession numbers KF806592–KF806597).

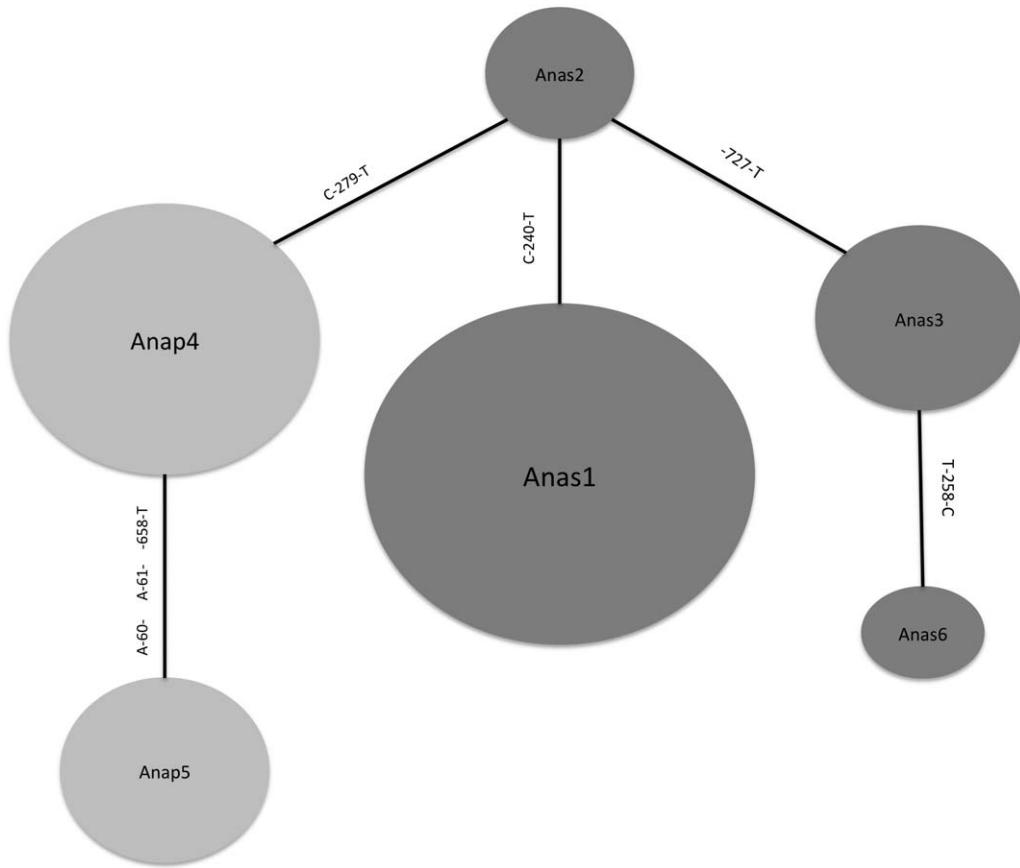
The 18 microsatellite loci carried a total of 108 alleles in 55 individuals of the 2 subspecies. We did not detect genotyping errors or the presence of null alleles in the sample. After adjustment for multiple comparisons, no evidence of linkage disequilibrium between any of the pairs of loci was found. One locus (Anam 97) deviated significantly from Hardy–Weinberg

TABLE 5.—Genetic diversity of 2 pronghorn subspecies, *Antilocapra americana peninsularis* and *A. a. sonoriensis*, measured at 18 microsatellite loci. A = number of alleles, A_r = allelic richness, A_e = effective number of alleles, A_p = number of private alleles, H_E = expected heterozygosity, H_O = observed heterozygosity.

Locus	<i>A. a. sonoriensis</i>						<i>A. a. peninsularis</i>					
	A	A_r	A_e	A_p	H_O	H_E	A	A_r	A_e	A_p	H_O	H_E
Anam79	5	4.58	2.81	4.0	0.53	0.64	4	3.52	1.19	3.0	0.17	0.16
Anam83	5	4.18	2.43	3.0	0.41	0.59	2	2	1.42	0.0	0.26	0.3
Anam49	5	4.57	2.72	4.0	0.47	0.63	3	3	2.37	2.0	0.52	0.58
Anam24	5	4.78	2.07	3.0	0.28	0.52	2	2	1.52	0.0	0.35	0.34
Anam88	6	5.44	2.67	5.0	0.47	0.63	3	2.99	1.52	2.0	0.26	0.34
Anam82	8	7.19	3.43	5.0	0.69	0.71	3	2.99	1.59	0.0	0.35	0.37
Anam69	6	5.42	2.68	4.0	0.47	0.63	4	3.96	2.57	2.0	0.7	0.61
Anam80	5	4.96	3.74	3.0	0.69	0.73	2	2	1.39	0.0	0.26	0.28
Anam50	5	4.6	3.53	5.0	0.78	0.72	3	3	2.34	3.0	0.61	0.57
Anam99	5	4.55	2.92	4.0	0.69	0.66	2	2	1.68	1.0	0.39	0.41
Anam97	5	4.44	2.75	5.0	0.56	0.64	4	3.99	2.27	4.0	0.43	0.56
Anam36	2	1.99	1.17	2.0	0.13	0.15	1	1	1.00	1.0	0	0
Anam14	6	4.29	1.31	4.0	0.25	0.24	2	1.95	1.05	0.0	0.04	0.05
Anam17	2	2	1.54	1.0	0.31	0.35	1	1	1.00	0.0	0	0
Aam2	6	5.06	2.53	2.0	0.63	0.6	5	4.78	3.09	1.0	0.74	0.68
Aam8	4	3.99	2.49	2.0	0.63	0.6	3	3	1.97	1.0	0.48	0.49
Aam3	2	1.99	1.28	2.0	0.25	0.22	3	2.99	1.93	3.0	0.43	0.48
Aam7	2	2	1.88	0.0	0.63	0.47	3	2.99	1.52	1.0	0.39	0.34
\bar{X}	4.67	4.23	2.44	3.22	0.49	0.54	2.78	2.73	1.75	1.33	0.36	0.36

equilibrium after Bonferroni correction in the Peninsular but not in the Sonoran subspecies.

All 18 microsatellite loci were polymorphic in the Sonoran subspecies, whereas 2 loci (Anam 36 and Anam 17) were monomorphic in the Peninsular subspecies (Table 5). The Sonoran subspecies carried 84 alleles in total, with the mean number of alleles per locus being 4.67 and ranging from 2 to 8 alleles per locus. A total of 50 alleles were detected in the Peninsular pronghorn and the mean number of alleles per locus for this subspecies was 2.78 and ranged from 1 to 5 alleles per locus. Differences between the subspecies also were observed in allelic richness, the effective number of alleles per locus, and mean observed heterozygosity (Table 5), all of which were higher in the Sonoran subspecies. The mean number of private alleles per locus was 3.22 for Sonoran and 1.33 for the Peninsular subspecies.


The 2 methods for estimating the inbreeding coefficient implemented in COANCESTRY were highly correlated (99.1%), so we present only results based on the triadic likelihood method (TrioML—Wang 2007). The average inbreeding level was 0.061 ± 0.004 (SE) and 0.086 ± 0.001 for the Sonoran and Peninsular populations, respectively, with 34.8% of the Peninsular and 12.5% of the Sonoran individuals showing inbreeding levels higher than 0.125, which is equivalent to half siblings, grandparent–grandchild, uncle–niece, or double first-cousin relationships. The various relatedness estimators were also highly correlated (r^2 ranged from 58.5% to 98.4%) so we present results obtained with the TrioML estimator of relatedness, which takes into account genotyping errors, tends to have a reduced sampling variance, produces results that are biologically constrained, and, unlike many other maximum-likelihood methods, does not overestimate pairwise relatedness (Wang 2007). The mean relatedness

coefficient was higher between individuals of the Peninsular subspecies (0.11 ± 0.03) than between animals of the Sonoran subspecies (0.079 ± 0.01).

Population structure.—A minimum spanning network depicting relationships among complete mitochondrial control region haplotypes is shown in Fig. 2. The haplotype Anas2, which was found in low frequency in the Sonoran subspecies, was central to the network, suggesting that it may be the most ancient haplotype. The 2 most common specific haplotypes, Anas1 and Anap4, which were found in the Sonoran and Peninsular pronghorn, respectively, appear to be derived from this ancestral haplotype. The AMOVA showed strong differentiation between the Sonoran and the Peninsular subspecies at both the haplotype and nucleotide level ($F_{ST} = 0.56$; $\Phi_{ST} = 0.84$).

All microsatellite-based fixation indexes were large, indicating significant differences between the 2 subspecies within the nuclear genome. F_{ST} and G_{ST} statistics, based on the infinite allele model, were almost identical (0.402 and 0.409, respectively), whereas R_{ST} , which is based on the more realistic stepwise-mutation model was slightly lower at 0.346. Nei's D , which includes a correction for small sample sizes, gave the highest differentiation index ($D_S = 0.885$). Concordant with these values, STRUCTURE analysis found that the individuals most likely compose 2 genetically distinct populations (10 replicate simulations consistently indicate $K = 2$), which correspond perfectly to the 2 subspecies. Cluster membership coefficients of the individuals indicate negligible admixture between the 2 subspecies.

Tests for genetic bottlenecks.— M -ratio analyses revealed support for both of the subspecies having undergone historical bottlenecks. Depending on the different assumptions of the prebottleneck N_e , the critical M value (M_C) ranged from 0.80 to

FIG. 2.—Minimum spanning network of the 6 pronghorn control region haplotypes. Circle sizes are proportional to the frequencies of the haplotypes in each sample. Light and dark gray circles represent Peninsular and Sonoran pronghorn, *Antilocapra americana peninsulae* and *A. a. sonoriensis*, haplotypes, respectively. The position and type of the changes are indicated for each variant site (e.g., Anas3 differs from Anas6 by a T–C change at position 258).

0.89. The far lower observed M -ratios for the Peninsular and Sonoran pronghorn (0.42 and 0.55, respectively) were well below the estimated M_C with 95% probability (Table 6), indicating a historical population bottleneck. Independently of the proportion of the multistep mutations in 2-phase mutation models and of the probability test used, BOTTLENECK did not detect any evidence of population reduction in the Peninsular pronghorn subspecies. In the Sonoran subspecies, a bottleneck signature was only detected with the standardized differences test and only with 1%, 5%, and 10% proportions of multistep mutations (Table 6).

Estimation of current effective population sizes.—Point estimates of N_e for the pronghorn subspecies varied depending on the choice of method, but ranged from 6 to 100 breeding individuals (Table 7). Not all of the approaches could be successfully implemented for both subspecies because

of computational and data limitations. Nonetheless, ONESAMP, Colony, and the linkage disequilibrium method in Ne-estimator produced estimations of N_e and confidence limits for both subspecies. For both subspecies, the highest N_e was estimated using LDNe (100.4 for the Sonoran subspecies and 23.5 for the Peninsular subspecies) and the lowest values were obtained using the linkage disequilibrium method within Ne-estimator (16.6 for the Sonoran subspecies and 6.1 for the Peninsular subspecies). Overall, a trend emerges in which estimates of N_e for the Sonoran subspecies are typically around 2- to 3-fold higher than the Peninsular subspecies regardless of the method used.

Historical population dynamics.—Estimates of historical migration rates (M) calculated using Migrate revealed little to no migration between the 2 subspecies over a long time period ($4N_e$ generations ago). Estimates of M were 0.16 from Sonoran

TABLE 6.—The results of M -ratio test and probabilities of heterozygote excess obtained using a range of mutational models.

	M-ratio	Standardized differences test <i>P</i> -value				Wilcoxon test <i>P</i> -value			
		TPM70	TPM90	TPM95	TPM99	TPM70	TPM90	TPM95	TPM99
<i>Antilocapra americana sonoriensis</i>	0.55	0.229	0.0167	0.00177	0.00007	0.533	0.8939	0.955	0.982
<i>Antilocapra americana peninsularis</i>	0.42	0.444	0.269	0.177	0.097	0.201	0.411	0.589	0.647

TABLE 7.—Pronghorn (*Antilocapra americana peninsularis* and *A. a. sonoriensis*) current effective population size (N_e) estimates. 95% CI = 95% confidence interval, LD = linkage disequilibrium.

	N_e				
	LD N_e (95% CIs)	ONESAMP (95% CIs)	Colony (95% CIs)	LD (95% CIs)	N_e -estimator
					Heterozygote excess
<i>A. a. sonoriensis</i>	100.4 (42–infinity)	15.6 (12.3–23.0)	45 (27–80)	16.6 (14.5–19.3)	38.2
<i>A. a. peninsularis</i>	23.5 (11.4–86.9)	9.5 (7.7–13.9)	21 (11–47)	6.1 (5.3–7.2)	—

to Peninsular subspecies and 0.43 vice versa. Contrary to the current extremely low N_e s, historical N_e -values estimated using Migrate were relatively high and similar for the both subspecies. Thus, θ for the Sonoran subspecies was 1.19, equivalent to an N_e of 2,704, and θ for the Peninsular subspecies was 1.12, equivalent to an N_e of 2,545. These estimates were derived from formulae proposed by Beerli (2008) and assuming a microsatellite mutation rate of 0.00011, as described by Crawford and Cuthbertson (1996).

DISCUSSION

In this study, we used a variety of different analytical approaches to elucidate the genetic diversity, population structure, and demography of 2 threatened desert pronghorn subspecies. We found low levels of genetic diversity in both subspecies, with the Peninsular pronghorn having the lowest reported genetic diversity of any pronghorn subspecies. Both subspecies had far higher historical than contemporary N_e s and showed evidence of historical bottlenecks, indicating population reduction that is consistent with anthropogenic impacts over the last 2 centuries. The Sonoran and Peninsular subspecies also were found to be strongly differentiated at nuclear and mitochondrial genetic markers. We discuss the evolutionary and conservation implications of these findings below.

Our results indicate that levels of genetic diversity are low for both subspecies but the Peninsular pronghorn is particularly depauperate, both at microsatellites and mitochondrial DNA. Although the genetic diversity of the Peninsular pronghorn is the lowest of any pronghorn subspecies described to date, results for the Sonoran subspecies are similar to those reported previously (Stephen et al. 2005a).

The low levels of diversity observed may have been caused by a population bottleneck related to anthropogenic hunting, habitat destruction, and captive breeding, but also could be partly a consequence of long-term geographical isolation (Eckert et al. 2008). Studies of island and isolated ungulate populations that have undergone population collapse show similarly low levels of haplotype diversity. For example, mountain bongo antelope (*Tragelaphus eurycerus isaaci*) and Hainan Eld's deer (*Rucervus eldii siamensis*) both carry only a single control region haplotype (Pang et al. 2003; Faria et al. 2011). The same also has been found for 5 captive or semicaptive populations of Dorcas gazelle (*Gazella dorcas* spp.) in Morocco (Godinho et al. 2012).

Pairwise relatedness values and inbreeding coefficients in the Peninsular and Sonoran pronghorn suggest that mating between closely related individuals of both subspecies may be frequent and could be playing an important role in shaping the current genetic structure of these subspecies. Lower genetic diversity, higher inbreeding, and relatedness within the Peninsular subspecies does not seem to be caused by a smaller historical population size, because estimated historical effective sizes were very similar for the 2 subspecies. Small population sizes over the last 100 years also cannot explain the differences, because both subspecies have numbered fewer than 500 individuals during this period (Table 1; Cancino et al. 1994, 1998). The number of founders of the captive populations also differs little between the subspecies (~20 for the Peninsular versus 14 for the Sonoran pronghorn). One possible explanation relates to the fact that the Peninsular pronghorn captive program has been running much longer than that of the Sonoran subspecies, potentially accentuating inbreeding and the loss of diversity via genetic drift. The Sonoran pronghorn captive-breeding program also received contributions from individuals from Mexico. Additionally, it is possible that the Sonoran pronghorn may have originally been less related and inbred, if at least some level of gene exchange was present with geographically adjacent populations of *A. a. americana*, as suggested previously (Stephen et al. 2005a).

The taxonomic rank of subspecies has been the subject of a long-running controversy (Mayr 1982), primarily because of the failure of some molecular studies to identify traditional subspecies as phylogenetically distinct (Barrowclough 1980; Ball and Avise 1992; Cronin 1993; Burbrink et al. 2000). Pronghorn subspecies status also has been much debated, with several researchers questioning the validity of established subspecies designations (Lee et al. 1994; Brown 2006). For example, Brown et al. (2006) concluded that the pronghorn is remarkably monotypic on the basis of several morphological measurements, with the possible exception being *A. a. peninsularis*. Several previous studies have attempted to elucidate pronghorn subspecies designations based on different genetic markers. For example, Lee et al. (1994) found that Oregon and American pronghorn were genetically indistinguishable from one another, but clearly differentiated from the Mexican subspecies. Lou (1998) found only 2 genetically differentiated groups of pronghorn populations; a northern group (represented by samples from Colorado, Kansas, Montana, Idaho, Wyoming, and Oregon) and a southern group (comprising *A. a. sonoriensis* and *A. a. americana* from Texas and southwestern Arizona). Stephen et al. (2005a) found

evidence in support of a history of recent isolation of the Sonoran pronghorn from the American subspecies, but argued that the Sonoran pronghorn is not highly distinct from *A. a. americana*. These authors suggested that genetic differences between the Sonoran and American subspecies have likely resulted from isolation by distance in historically contiguous populations, the loss of genetic diversity due to genetic bottlenecks, and the cumulative effects of genetic drift, rather than being due to prolonged separation and the subsequent accumulation of unique genetic diversity.

Our results based on mitochondrial and nuclear markers show that the Peninsular pronghorn is highly distinct from its Sonoran conspecific. The 2 subspecies carry private alleles and the degree of genetic differentiation is very large ($F_{ST} = 0.402$, and Nei's $D = 0.885$), about twice as large as the highest values reported from any other pronghorn populations. This implies that gene flow between the 2 subspecies has been restricted, a finding consistent with the control region data showing no shared haplotypes. This pattern also is reflected in studies of other ungulates with overlapping geographic ranges such as mule deer (*Odocoileus hemionus*—Latch et al. 2009).

The Sonoran Desert formed 8–15 million years ago in the Miocene (Van Devender 2007), well before the geological separation of the Baja California Peninsula (about 5 million years ago) contributed to the genetic isolation of the terrestrial biota in the Peninsula and the evolution in situ of endemic species (Hafner and Riddle 1997; Riddle et al. 2000; Riddle and Hafner 2006). Analyses of pack rat midden fossils have shown that desert scrub communities and the geographic ranges of individual species have been dynamic in the Sonoran Desert since the end of the last glacial period around 11,000 years ago. Woodland and chaparral vegetation is restricted today to mountaintops lower than 600 m in elevation and desert scrub communities and the modern Sonoran Desert have existed only for the last 9,000 to 4,500 years (Van Devender 2007). Given that there were multiple glacial periods during the Pleistocene, there seem to have been ample opportunities for the Peninsular and Sonoran pronghorn to evolve in isolation during range shifts to southern or lower-elevation glacial refugia in the Sonoran Desert. Genetic drift in the captive breeding herds probably also has played a large role in explaining the strong differentiation of the 2 subspecies (Lacy et al. 1993; Leberg and Firmin 2008), although previous studies of other species suggest that this need not be the case. For example, Peng et al. (2008) found multiple mitochondrial haplotypes in a herd of musk deer (*Moschus berezovskii*) held in captivity for more than 50 years, which they attributed to this herd never having suffered from a severe founder effect and the founders originating from a very large wild population. In contrast, both of the pronghorn subspecies have experienced similar demographic histories and were probably never very abundant in the wild because of the harsh desert environment. It also is well known that droughts can heavily affect pronghorn survival and recruitment (Brown et al. 2002; Bright and Hervert 2005; Bender et al. 2013), suggesting that environmental factors could have played a role in shaping

pronghorn genetic diversity and differentiation. Nonetheless, the effect of the strong genetic drift in extremely small and geographically isolated populations cannot be ruled out (Casas-Marce et al. 2013).

We identified strong genetic bottleneck signatures in both pronghorn subspecies using the *M*-ratio test, whereas heterozygosity-excess tests were only significant for the Sonoran subspecies. The heterozygosity-excess test is highly dependent on the mutational model assumed and is often underpowered to detect even 10- to 1,000-fold population declines (Girod et al. 2011; Peery et al. 2012). Heterozygosity excess, caused by the loss of rare alleles during a bottleneck, is a transient phenomenon, because heterozygosity quickly reaches a mutation–drift equilibrium (Luikart and Cornuet 1998). This could explain why this test detected a bottleneck in the Sonoran pronghorn, which has been subject to a more recent reduction (only ~8 years in captivity), but not in the Peninsular pronghorn subject to ~15 years in captivity. The *M*-ratio has also been shown to perform better under certain circumstances at detecting population reductions (Hundertmark and Van Daele 2010) and is particularly sensitive to older bottlenecks (Spear et al. 2006; Swatdipong et al. 2010). Results of the *M*-ratio test supported historical bottlenecks in both pronghorn subspecies. The observed ratios were smaller than obtained for several other species with known histories of population reductions, including the Mexican wolf (*Canis lupus baileyi*), Mediterranean monk seal (*Monachus monachus*), and northern elephant seal (*Mirounga angustirostris*—Garza and Williamson 2001). In our case, the bottleneck was probably caused by long-term small population sizes together with unregulated hunting in the last 100–200 years.

The effective size can be estimated with precision using pedigree information that accounts for inbreeding in the population (Falconer and Mackay 1996). However, these estimates are largely dependent on the completeness of the pedigree (Goyache et al. 2003), making confidence in the obtained values difficult in many breeding programs where the genetic relatedness of founder individuals is unknown. This means that genetic methods are often more appropriate to estimate N_e . Discrepancies between the different estimators may be attributed to the different assumptions upon which the various methods are based. Regardless of these methodological subtleties, however, a consistent pattern emerges in our study, in which N_e -values recovered for the Sonoran subspecies were 2–3 times larger relative to the Peninsular pronghorn. This may have important implications for conservation because, with smaller N_e -values, the Peninsular subspecies may be more prone to extinction. Our analyses also confirm the utility of comparing results from multiple estimators (Beebee 2009; Luikart et al. 2010).

Contemporary N_e estimates were only about 1–5% from the historical N_e estimates generated by Migrate, in line with the large and widespread population decline that pronghorn experienced over the last 2 centuries (Cancino et al. 1998, 2005; Brown and Ockenfels 2007). However, very low levels of genetic diversity preclude more-detailed analyses of our

data. Future studies may be able to overcome this limitation using next-generation sequencing-based approaches capable of screening many more loci.

Two major axes of biodiversity are generally recognized: one related to isolation and one related to adaptation (Waples 2013). Regarding isolation, an evolutionarily significant unit is a group of organisms that has been isolated from other conspecific groups for a sufficient period of time to have undergone meaningful genetic divergence from other groups (Ryder et al. 1988), and contributes substantially to the ecological or genetic diversity found within the species taxon as a whole (Waples 1991b). The genetic cutoffs for evolutionarily significant units include that they are reciprocally monophyletic for mtDNA alleles and show significant divergence of allele frequencies at nuclear loci (Moritz 1994). Concerning adaptation, evolutionarily significant units have genetic attributes significant for the present and future of the species in question (Ryder et al. 1988). Although it is problematic to predict which evolutionarily significant units will be important to the future evolution of the taxon, conservation of as many evolutionarily significant units as possible should minimize anthropogenic constraints on natural evolutionary processes and maximize the probability that the taxon and some of its populations will persist into the future (Hey et al. 2003). Conservation below the species level must be guided by the general objective of preventing elements of biodiversity from becoming extinct or extirpated (Green 2005), because the loss (Moritz 2002) or merging of evolutionarily significant units are irreversible processes and are therefore not recommended (Ryder et al. 1988).

Our study showed that both pronghorn subspecies from the Sonoran Desert meet the evolutionarily significant unit criteria relating to isolation. Regarding adaptation, although we did not survey adaptive or detrimental variation directly, genetic drift in long-term small populations may have reduced nonneutral variation as well, because selection is less effective in small populations, except for genes under strong selection (Munguia-Vega et al. 2007). The Sonoran Desert is an unusual environment for pronghorn and is located at the southern edge of the species' range. This implies that the genomic diversity of pronghorn might include some adaptive genetic variants shaped during thousands of years by strong selection to drought and warmer temperatures. Considering that climate change projections suggest that both water scarcity and higher temperatures will be spreading over North America over the next decades (Prudhomme et al. 2013), adaptive variants within the Peninsular and Sonoran pronghorn could be useful in allowing the species as a whole to adapt to climate change, particularly at the edge of their distribution where extinction risk is predicted to be higher (Provan and Maggs 2012). Although this argument is highly speculative, there is some evidence to suggest that local populations of pronghorn in the Sonoran Desert may be adapted to their local environment. For instance, they are comparatively smaller and paler (Brown et al. 2006), give

birth earlier, and males do not seem to form harems (Cancino et al. 2005; Wilson et al. 2008).

Because both subspecies currently possess low levels of genetic diversity, we recommend close genetic monitoring in order to minimize the effects of further inbreeding and the erosion of genetic diversity. One way to do this would be to design captive-breeding programs based on the genetic relationships between individuals. As noted previously by O'Gara and Yoakum (2004), a comprehensive study of pronghorn incorporating all of the subspecies and embracing a wider variety of genetic markers also is currently lacking. Together with information from adaptive genetic markers, this would improve our understanding of the potential for genetic rescue and the risk of outbreeding depression in pronghorn.

RESUMEN

Las especies que han experimentado reducciones poblacionales son ejemplos valiosos para entender la respuesta genética al cambio demográfico. En el pasado el berrendo (*Antilocapra americana*) tenía una amplia distribución en las praderas norteamericanas, sin embargo su población sufrió una drástica reducción por caza descontrolada y fragmentación de su hábitat durante finales del siglo XIX y comienzos del siglo XX. *A. a. peninsularis* y *A. a. sonoriensis*, son 2 subespecies del berrendo que habitan el extremo sur del rango de distribución de la especie; ambas se encuentran al borde de la extinción y sobreviven casi exclusivamente en cautiverio. En este estudio, secuenciamos en su totalidad la región control del ADN mitocondrial y genotipificamos 18 loci microsatélites en 109 individuos con el propósito de evaluar el impacto de cuellos de botella poblacionales, reproducción en cautiverio, tamaños poblacionales pequeños y aislamiento sobre la composición genética de estas dos subespecies. Encontramos niveles bajos de diversidad genética en ambas subespecies, particularmente en el berrendo peninsular. Las 2 subespecies mostraron diferenciación genética alta y significativa, lo que implica ausencia de flujo genético histórico y reciente, a pesar de su cercanía geográfica dentro del Desierto Sonorense. Inferimos que el tamaño poblacional histórico efectivo para ambas subespecies fue similar, mientras que el berrendo sonorense tiene un tamaño efectivo contemporáneo 2 veces mayor que el de la subespecie peninsular. Nuestro estudio sugiere que es necesario realizar un manejo genético cuidadoso en ambas subespecies, para así minimizar la pérdida de variabilidad genética durante la reproducción en cautiverio.

ACKNOWLEDGMENTS

We thank V. Gelasio Sánchez Sotomayor of the Área de Protección de Flora y Fauna Valle de los Cirios for donations of samples and collaboration. We thank J. Atkinson (United States Fish and Wildlife Service), J. Hervert and J. Bright (Arizona Game and Fish Department), and O. Alcumbrac and his group of veterinarians for their continued support, comments, and expertise with pronghorn. This work would not be possible without the entire team that yearly

aids to capture semicaptive individuals in Ajo, Arizona. Any use of trade, firm, or product names is for descriptive purpose only and does not imply endorsement by the United States Government.

LITERATURE CITED

AMOS, W., J. I. HOFFMAN, A. FRODSHAM, L. ZHANG, S. BEST, AND A. V. S. HILL. 2007. Automated binning of microsatellite alleles: problems and solutions. *Molecular Ecology Notes* 7:10–14.

BALL, R. M., AND J. C. AVISE. 1992. Mitochondrial DNA phylogeographic differentiation among avian populations and the evolutionary significance of subspecies. *Auk* 109:626–636.

BARROWCLOUGH, G. F. 1980. Genetic and phenotypic differentiation in a wood warbler (genus *Dendroica*) hybrid zone. *Auk* 97:655–668.

BEEBEE, T. J. C. 2009. A comparison of single-sample effective size estimators using empirical toad (*Bufo calamita*) population data: genetic compensation and population size–genetic diversity correlations. *Molecular Ecology* 18:4790–4797.

BEERLI, P. 2006. Comparison of Bayesian and maximum likelihood inference of population genetic parameters. *Bioinformatics* 22:341–345.

BEERLI, P. 2008. Migrate-N, version 3.3.1. popgen.scs.fsu.edu/Migraten.html. Accessed 12 April 2013.

BEERLI, P. 2009. How to use Migrate or why are Markov chain Monte Carlo programs difficult to use. Pp. 42–79 in *Population genetics for animal conservation* (G. Bertorell, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds.). Cambridge University Press, Cambridge, United Kingdom.

BEERLI, P., AND J. FELSENSTEIN. 2001. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations using a coalescent approach. *Proceedings of the National Academy of Sciences* 98:4563–4568.

BELKHIR, K., P. BORSA, L. CHIKHI, N. RAUFASTE, AND F. BONHOMME. 1996–2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France.

BENDER, L. C., J. C. BOREN, H. HALBRITTER, AND S. COX. 2013. Factors influencing survival and productivity of pronghorn in a semiarid grass-woodland in east-central New Mexico. *Human–Wildlife Interactions* 7:313–324.

BRIGHT, J. L., AND J. J. HERVERT. 2005. Adult and fawn mortality of Sonoran pronghorn. *Wildlife Society Bulletin* 33:43–50.

BROWN, D. E. 2006. An evolutionary history of pronghorn habitat and its effect on taxonomic differentiation. *Proceedings of the 22nd Biennial Pronghorn Antelope Workshop* 22:97–124.

BROWN, D. E., W. F. FAGAN, R. LEE, H. G. SHAW, AND R. B. TURNER. 2002. Winter precipitation and pronghorn survival in the Southwest. *Proceedings of the 22nd Biennial Pronghorn Workshop* 20:115–122.

BROWN, D. E., C. R. MAHER, AND C. D. MITCHELL. 2006. A comparison of pronghorn body measurements throughout western North America. *Proceedings of the 22nd Biennial Pronghorn Antelope Workshop* 22:125–137.

BROWN, D. E., AND R. A. OCKENFELS. 2007. Arizona's pronghorn antelope, a conservation legacy. Arizona Antelope Foundation, Phoenix.

BURBRINK, F. T., R. LAWSON, AND J. B. SLOWINSKI. 2000. Mitochondrial DNA phylogeography of the polytypic North American rat snake (*Elaphe obsoleta*): a critique of the subspecies concept. *Evolution* 54:2107–2118.

CANCINO, J., A. ORTEGA-RUBIO, AND R. RODRIGUEZ-ESTRELLA. 1998. Population size of the Peninsular pronghorn in Baja California Sur, Mexico. *California Fish and Game* 84:25–30.

CANCINO, J., R. RODRÍGUEZ-ESTRELLA, AND A. ORTEGA. 1994. First aerial survey of historical range for peninsular pronghorn of Baja California, Mexico. *Journal of the Arizona–Nevada Academy of Science* 28:46–50.

CANCINO, J., V. SÁNCHEZ-SOTOMAYOR, AND R. CASTELLANOS. 2005. From the field: capture, hand-raising and captive management of peninsular pronghorn. *Wildlife Society Bulletin* 33:61–65.

CARLING, M. D., C. PASSAVANT, AND J. A. BYERS. 2003. DNA microsatellites of pronghorn (*Antilocapra americana*). *Molecular Ecology Notes* 3:10–11.

CASAS-MARCE, M., L. SORIANO, J. LÓPEZ-BAO, AND J. GODOY. 2013. Genetics at the verge of extinction: insights from the Iberian lynx. *Molecular Ecology* 22:5503–5515.

CLEMENT, M., D. POSADA, AND K. A. CRANDALL. 2000. TCS: a computer program to estimate gene genealogies. *Molecular Ecology* 9:1657–1659.

CORNUEL, J. M., AND G. LUIKART. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. *Genetics* 144:2001–2014.

CRAWFORD, A. M., AND R. P. CUTHBERTSON. 1996. Mutations in sheep microsatellites. *Genome Research* 6:876–879.

CRONIN, M. A. 1993. Mitochondrial DNA in wildlife taxonomy and conservation biology: cautionary notes. *Wildlife Society Bulletin* 21:339–348.

ECKERT, C. G., K. E. SAMIS, AND S. C. LOUGHEED. 2008. Genetic variation across species' geographical ranges: the central–marginal hypothesis and beyond. *Molecular Ecology* 17:1170–1188.

EXCOFFIER, L., G. LAVAL, AND S. SCHNEIDER. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. *Evolutionary Bioinformatics Online* 1:47–50.

EXCOFFIER, L., P. E. SMOUSE, AND J. M. QUATTRO. 1992. Analysis of molecular variance inferred from metric distances among mtDNA haplotypes: application to human mitochondrial DNA restriction data. *Genetics* 131:479–491.

FALCONER, D. S., AND T. F. C. MACKAY. 1996. *Introduction to quantitative genetics*. 4th ed. Longman, Harlow, United Kingdom.

FARIA, P., ET AL. 2011. The use of non-invasive molecular techniques to confirm the presence of mountain bongo (*Tragelaphus eurycerus isaaci*) populations in Kenya and preliminary inference of their mitochondrial genetic variation. *Conservation Genetics* 12:745–751.

FRANKHAM, R. 1996. Relationship of genetic variation to population size in wildlife. *Conservation Biology* 10:1500–1508.

FRANKHAM, R., J. D. BALLOU, AND D. A. BRISCOE. 2002. *Introduction to conservation genetics*. Cambridge University Press, Cambridge, United Kingdom.

GARZA, J. C., AND E. G. WILLIAMSON. 2001. Detection of reduction in population size using data from microsatellite loci. *Molecular Ecology* 10:305–318.

GIROD, C., R. VITALIS, R. LEBLOIS, AND H. FREVILLE. 2011. Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the Msvar method. *Genetics* 188:165–179.

GODINHO, R., ET AL. 2012. Conservation genetics of the endangered Dorcas gazelle (*Gazella dorcas* spp.) in northwestern Africa. *Conservation Genetics* 13:1003–1015.

GOLDSTEIN, D. B., A. R. LINARES, L. L. CAVALLISFORZA, AND M. W. FELDMAN. 1995. An evaluation of genetic distances for use with microsatellite loci. *Genetics* 139:463–471.

GOUDET, J. 1992. Fstat (version 1.2): a computer program to calculate *F*-statistics. *Journal of Heredity* 86:485–486.

GOYACHE, F., ET AL. 2003. Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example. *Journal of Animal Breeding and Genetics* 120:95–103.

GREEN, D. M. 2005. Designatable units for status assessment of endangered species. *Conservation Biology* 19:1813–1820.

HAFNER, D. J., AND B. R. RIDDLE. 1997. Biogeography of Baja California peninsular desert mammals. Pp. 39–68 in *Life among the muses: papers in honor of James S. Findley* (T. L. Yates, W. L. Gannon, and D. E. Wilson, eds.). Museum of Southwestern Biology, University of New Mexico, Albuquerque.

HARDY, O. J., AND X. VEKEMANS. 2002. Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. *Molecular Ecology Notes* 2:618–620.

HASSANIN, A., ET AL. 2012. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. *Comptes Rendus Biologies* 335:32–50.

HEFFELFINGER, J. R., B. W. O'GARA, C. M. JANIS, AND R. BABB. 2004. A bestiary of ancestral antilocaprids. *Proceedings of the 20th Biennial Pronghorn Workshop* 20:87–111.

HEY, J., R. S. WAPLES, M. L. ARNOLD, R. K. BUTLIN, AND R. G. HARRISON. 2003. Understanding and confronting species uncertainty in biology and conservation. *Trends in Ecology & Evolution* 18:597–603.

HILL, W. G. 1981. Estimation of effective population size from data on linkage disequilibrium. *Genetic Research* 38:209–216.

HUBISZ, M. J., D. FALUSH, M. STEPHENS, AND J. K. PRITCHARD. 2009. Inferring weak population structure with the assistance of sample group information. *Molecular Ecology Resources* 9:1322–1332.

HUNDERTMARK, K. J., AND L. VAN DAELE. 2010. Founder effect and bottleneck signatures in an introduced, insular population of elk. *Conservation Genetics* 11:139–148.

JOHANNESSEN, K., AND C. ANDRÉ. 2006. Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. *Molecular Ecology* 15:2013–2029.

LACY, R. C., A. M. PETRIC, AND M. WARNEKE. 1993. Inbreeding and outbreeding depression in captive populations of wild species. Pp. 352–374 in *The natural history of inbreeding and outbreeding* (N. W. Thornhill, ed.). University of Chicago Press, Chicago, Illinois.

LALIBERTE, A. S., AND W. J. RIPPLE. 2004. Range contractions of North American carnivores and ungulates. *BioScience* 54:123–138.

LATCH, E. K., J. R. HEFFELFINGER, J. A. FIKE, AND O. E. RHODES. 2009. Species-wide phylogeography of North American mule deer (*Odocoileus hemionus*): cryptic glacial refugia and postglacial recolonization. *Molecular Ecology* 18:1730–1745.

LEBERG, P. L., AND B. D. FIRMIN. 2008. Role of inbreeding depression and purging in captive breeding and restoration programs. *Molecular Ecology* 17:334–343.

LEE, T. E., J. W. BICKHAM, AND M. D. SCOTT. 1994. Mitochondrial DNA and allozyme analysis of North American pronghorn populations. *Journal of Wildlife Management* 58:307–318.

LEE, T. E., J. N. DERR, J. W. BICKHAM, AND T. L. CLARK. 1989. Genetic variation in pronghorn from west Texas. *Journal of Wildlife Management* 53:890–896.

LIBRADO, P., AND J. ROZAS. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25:1451–1452.

LOU, Y. 1998. Genetic variation of pronghorn (*Antilocapra americana*) populations in North America. Ph.D. dissertation, Texas A&M University, College Station.

LUIKART, G., AND J. M. CORNUET. 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. *Conservation Biology* 12:228–233.

LUIKART, G., N. RYMAN, D. A. TALLMON, M. K. SCHWARTZ, AND F. W. ALLENDORF. 2010. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. *Conservation Genetics* 11:355–373.

MACE, G. M., AND R. LANDE. 1991. Assessing extinction threats—toward a reevaluation of IUCN threatened species categories. *Conservation Biology* 5:148–157.

MAYR, E. 1982. Of what use are subspecies? *Auk* 99:593–595.

McCABE, R. E., B. W. O'GARA, AND H. M. REEVES. 2004. Prairie ghost: pronghorn and human interaction in early America. University Press of Colorado, Boulder, Colorado.

MCKENNA, M. C., AND S. K. BELL. 1997. Classification of mammals above the species level. Columbia University Press, New York.

MEDELLIN, R. A., C. MANTEROLA, M. VALDEZ, D. G. HEWITT, D. DOAN-CRIDER, AND T. E. FULBRIGHT. 2005. History, ecology, and conservation of the pronghorn antelope, bighorn sheep, and black bear in Mexico. Pp. 387–404 in *Biodiversity, ecosystems, and conservation in northern Mexico* (J.-L. E. Cartron, G. Ceballos, and R. S. Felger, eds.). Oxford University Press, New York.

MILLIGAN, B. G. 2003. Maximum-likelihood estimation of relatedness. *Genetics* 163:1153–1167.

MORITZ, C. 1994. Defining evolutionary significant units for conservation. *Trends in Ecology & Evolution* 9:373–375.

MORITZ, C. 2002. Strategies to protect biological diversity and the evolutionary processes that sustain it. *Systematic Biology* 51:238–254.

MUNGUIA-VEGA, A., Y. ESQUER-GARRIGOS, L. ROJAS-BRACHO, R. VAZQUEZ-JUAREZ, A. CASTRO-PRIETO, AND S. FLORES-RAMIREZ. 2007. Genetic drift vs. natural selection in a long-term small isolated population: major histocompatibility complex class II variation in the Gulf of California endemic porpoise (*Phocoena sinus*). *Molecular Ecology* 16:4051–4065.

MUNGUIA-VEGA, A., A. KLIKOVA, AND M. CULVER. 2013. New microsatellite loci isolated via next-generation sequencing for two endangered pronghorn from the Sonoran Desert. *Conservation Genetics Resources* 5:125–127.

NEI, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. *Genetics* 89:583–590.

NELSON, E. W. 1925. Status of the pronghorned antelope, 1922–1924. *Bulletin of the United States Department of Agriculture* 1346:1–64.

O'GARA, B. W., AND J. D. YOAKUM. 2004. Pronghorn ecology and management. University Press of Colorado, Boulder, Colorado.

OTTE, A. 2006. Partners save the Sonoran pronghorn. *Endangered Species Bulletin* 31:22–23.

OVENDEN, J., ET AL. 2007. The genetic effective and adult census size of an Australian population of tiger prawns (*Penaeus esculentus*). *Molecular Ecology* 16:127–138.

PANG, J., A. R. HOELZEL, Y. SONG, Z. ZENG, AND Y. ZHANG. 2003. Lack of mtDNA control region variation in Hainan Eld's deer: consequence of a recent population bottleneck? *Conservation Genetics* 4:109–112.

PEAKALL, R., AND P. E. SMOUSE. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6:288–295.

PEERY, M. Z., ET AL. 2012. Reliability of genetic bottleneck tests for detecting recent population declines. *Molecular Ecology* 21:3403–3418.

PENG, H., S. LIU, F. ZOU, B. ZENG, AND B. YUE. 2008. Genetic diversity of captive forest musk deer (*Moschus berezovskii*) inferred from the mitochondrial DNA control region. *Animal Genetics* 40:65–72.

PIRY, S., G. LUIKART, AND J. M. CORNUET. 1999. BOTTLENECK: a program for detecting recent effective population size reductions from allele frequency data. *Journal of Heredity* 90:502–503.

PONS, O., AND R. J. PETIT. 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. *Genetics* 144:1237–1245.

PRITCHARD, J. K., M. STEPHENS, AND P. DONNELLY. 2000. Inference of population structure using multilocus genotype data. *Genetics* 155:945–959.

PROVAN, J., AND C. A. MAGGS. 2012. Unique genetic variation at a species' rear edge is under threat from global climate change. *Proceedings of the Royal Society, B: Biological Sciences* 279:39–47.

PRUDHOMME, C., ET AL. 2013. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. *Proceedings of the National Academy of Sciences* 111:3262–3267.

RHODES, O. E., JR., E. P. REAT, J. R. HEFFELINGER, AND J. C. DE VOS, JR. 2001. Analysis of reintroduced pronghorn populations in Arizona using mitochondrial DNA markers. *Proceedings of the 19th Biennial Pronghorn Antelope Workshop* 19:45–54.

RICE, W. R. 1989. Analyzing tables of statistical tests. *Evolution* 43:223–225.

RIDDLE, B. R., AND D. J. HAFNER. 2006. A step-wise approach to integrating phylogeographic and phylogenetic biogeographic perspectives on the history of a core North American warm deserts biota. *Journal of Arid Environments* 66:435–461.

RIDDLE, B. R., D. J. HAFNER, L. F. ALEXANDER, AND J. R. JAEGER. 2000. Cryptic vicariance in the historical assembly of a Baja California Peninsular desert biota. *Proceedings of the National Academy of Sciences* 97:14438–14443.

ROUSSET, F. 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. *Molecular Ecology Resources* 8:103–106.

RYDER, O. A., J. H. SHAW, AND C. M. WEMMER. 1988. Species, subspecies and ex situ conservation. *International Zoo Yearbook* 27:134–140.

SCHLÖTTERER, C., R. RITTER, B. HARR, AND G. BREM. 1998. High mutation rate of a long microsatellite allele in *Drosophila melanogaster* provides evidence for allele-specific mutation rates. *Molecular Biology and Evolution* 15:1269–1274.

SEMARNAT [SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES]. 2009. Programa de acción para la conservación de la especie: berrendo (*Antilocapra americana*). Instituto Nacional de Ecología, SEMARNAT, México D.F., México.

SEMARNAT [SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES]. 2010. NOM-059-ECOL-2010. Protección ambiental—especies nativas de México de flora y fauna silvestres—categorías de riesgo y especificaciones para su inclusión, exclusión o cambio—lista de especies en riesgo. 2nd ed. Diario Oficial de la Federacion, México D.F., México.

SIKES, R. S., W. L. GANNON, AND THE ANIMAL CARE AND USE COMMITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. *Journal of Mammalogy* 92:235–253.

SPEAR, S. F., R. PETERSON, M. D. MATOCQ, AND A. STORFER. 2006. Molecular evidence for historical and recent population size reductions of tiger salamanders (*Ambystoma tigrinum*) in Yellowstone National Park. *Conservation Genetics* 7:605–611.

STEPHEN, C., J. C. DEVOS, T. E. LEE, J. W. BICKHAM, J. R. HEFFELINGER, AND O. E. RHODES. 2005a. Population genetic analysis of Sonoran pronghorn (*Antilocapra americana sonoriensis*). *Journal of Mammalogy* 86:782–792.

STEPHEN, C., D. G. WHITTAKER, D. GILLIS, L. L. COX, AND O. E. RHODES. 2005b. Genetic consequences of reintroductions: an example from Oregon pronghorn antelope (*Antilocapra americana*). *Journal of Wildlife Management* 69:1463–1474.

SWATDIPONG, A., C. R. PRIMMER, AND A. VASEMAGI. 2010. Historical and recent genetic bottlenecks in European grayling, *Thymallus thymallus*. *Conservation Genetics* 11:279–292.

TALLMON, D. A., A. KOYUK, G. LUIKART, AND M. A. BEAUMONT. 2008. ONESAMP: a program to estimate effective population size using approximate Bayesian computation. *Molecular Ecology Resources* 8:299–301.

TALLMON, D. A., G. LUIKART, AND M. A. BEAUMONT. 2004. Comparative evaluation of a new effective population size estimator based on approximate Bayesian computation. *Genetics* 167:977–988.

THEIMER, T., S. SPRAGUE, E. EDDY, AND R. BENFORD. 2012. Genetic variation of pronghorn across US Route 89 and State Route 64. Report FHWA-AZ-12-659 prepared for Arizona Department of Transportation, Flagstaff.

UNITED STATES FISH AND WILDLIFE SERVICE. 1973. Endangered species expenditures 2012. United States Fish and Wildlife Service, Washington, D.C. pp. 1–408.

UNITED STATES FISH AND WILDLIFE SERVICE. 2010. U.S. Fish and Wildlife Service. Final environmental assessment for reestablishment of Sonoran pronghorn. Southwest Region, Arizona.

VAN DEVENDER, T. R. 2007. Ice ages in the Sonoran Desert. Pp. 58–68 in Dry borders: great natural reserves of the Sonoran Desert (R. S. Felger and B. Broyles, eds.). University of Utah Press, Salt Lake City, Utah.

VAN OOSTERHOUT, C., W. F. HUTCHINSON, D. P. M. WILLS, AND P. SHIPLEY. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes* 4:535–538.

WANG, J. 2007. Triadic IBD coefficients and applications to estimating pairwise relatedness. *Genetic Resources* 89:135–153.

WANG, J. 2009. A new method for estimating effective population sizes from a single sample of multilocus genotypes. *Molecular Ecology* 18:2148–2164.

WANG, J. 2011. COANCESTRY: a program for simulating, estimating and analyzing relatedness and inbreeding coefficients. *Molecular Ecology Resources* 11:141–145.

WAPLES, R. S. 1991a. Genetic methods for estimating the effective size of cetacean populations. Report of the International Whaling Commission 13:279–300.

WAPLES, R. S. 1991b. Pacific Salmon, *Oncorhynchus* spp., and the definition of “species” under the Endangered Species Act. *Marine Fisheries Review* 53:11–22.

WAPLES, R. S. 2006. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. *Conservation Genetics* 7:167–184.

WAPLES, R. S. 2013. Captive breeding and the evolutionarily significant unit. Pp. 668–673 in *Encyclopedia of biodiversity* (S. A. Levin, ed.). 2nd ed. Vol. 1. Academic Press, Waltham, Massachusetts.

WAPLES, R. S., AND C. DO. 2008. LDNe: a program for estimating effective population size from data on linkage disequilibrium. *Molecular Ecology Resources* 8:753–756.

WEIR, B. S., AND C. C. COCKERHAM. 1984. Estimating *F*-statistics for the analysis of population structure. *Evolution* 38:1358–1370.

WILSON, E. O. 2010. The diversity of life. Harvard University Press, Cambridge, Massachusetts.

WILSON, R. R., P. R. KRAUSMAN, AND J. R. MORGART. 2008. Behavior and timing of life-history events in a semi-captive population of the Sonoran pronghorn (*Antilocapra americana sonoriensis*). *Southwestern Naturalist* 53:389–393.

WILSON, R. R., P. R. KRAUSMAN, AND J. R. MORGART. 2010. Recovery efforts for the Sonoran pronghorn in the United States. Pp. 283–292 in *Southwestern desert resources* (W. Halvorson, C. Schwalbe, and C. van Riper III, eds.). University of Arizona Press, Tucson, Arizona.

WRIGHT, S. 1931. Evolution in Mendelian populations. *Genetics* 16:97–159.

YOAKUM, J. D. 1975. Antelope and livestock on rangelands. *Journal of Animal Science* 40:985–988.

Submitted 11 December 2013. Accepted 4 May 2014.

Associate Editor was Burton K. Lim.