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This document provides the code for all major analysis in our paper. Duplicate analyses that have not been
part of an argument (e.g. most analysis for pups) were strapped out for readability. Both the Rmarkdown file
and the data can be accessed directly from the hyperlinks in the methods section of the paper (Dataset S1,
Dataset S2) or by downloading this GitHub repository. Just click on the link and then on Download ZIP on
the right-hand side of the page. Make sure you read the instructions in the xlsx sheet if you downloaded the
data from the paper or from the Readme file on GitHub if you downloaded the repository. If you have any
questions, don´t hesitate contacting me: martin.adam.stoffel[at]gmail.com.

The sequence of code follows roughly the sequence of analysis in the Results section of the paper. For most
permutation tests in this file, the number of permutations was fixed at 1000 for computational reasons, while
within the original analyses we used 99.999 permutations.

Prerequisites:

• Some of the functions in the analysis (g2, sMLH) are part of the inbreedR package, that we wrote
in parallel to the analyses. The inbreedR package provides a framework for analysing inbreeding
and HFCs from genetic markers (SNPs and microsatellites) and will soon be published on CRAN. To
download and install the newest version of the package from the developer platform GitHub, you need
to install the devtools package as shown in the next section.

• For running the complete code you need a files subfolder with all the raw data files.

Installing inbreedR from GitHub.

# install.packages("devtools")
library(devtools)
# uncomment the next line for downloading and installing inbreedR
# install_github("mastoffel/inbreedR")
library(inbreedR)

See ?inbreedR for further information on the functions or type browseVignettes(package = "inbreedR")
to have a look at the vignette.

Loading data, standardisation and transformation

Loading the

• chemical data (scent_raw, called scent data from now), which is the output of Gas-chromatogramm
peak detection done in Xcalibur 2.0.5. (A first preprocessing was done by aligning the raw chemical data
and removing substances that have been present in the control sample, see Methods part of the paper)
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• identities for colony membership (colony), mother-offspring pairs (family) and mothers and pups,
respectively (age)

scent_raw <- as.data.frame(t(read.csv(".\\files\\scent_raw.csv", row.names = 1)))
factors <- read.csv(".\\files\\factors.csv",row.names=1)
head(factors)
#> colony family age
#> M10 2 10 1
#> M12 2 12 1
#> M14 2 14 1
#> M15 1 15 1
#> M16 2 16 1
#> M17 2 17 1

Standardising observations by total, such that within every observation compounds add up to 100 % (Thus
averaging out absolute concentration differences between samples)

scent_stand <- as.data.frame(t(apply(scent_raw, 1, function(x) (x/sum(x)) * 100)))

Log(x+1) transformation of the standardised scent data.

scent <- log(scent_stand + 1)

The scent matrix contains 82 observations and 213 compounds (retention times of chemicals are column
names, values are relative concentrations) in total.

dim(scent)
#> [1] 82 213
head(scent[1:6])
#> 8.061111111 8.23 8.307142857 8.394 8.47375 8.516153846
#> M10 0.000000 0.000000 0.0000000 0 0.000000 0.6562090
#> M12 0.000000 0.000000 0.4864961 0 0.000000 0.0000000
#> M14 3.222626 1.665421 0.0000000 0 0.000000 0.0000000
#> M15 0.000000 0.000000 0.0000000 0 0.000000 0.0000000
#> M16 0.000000 0.000000 0.6849915 0 1.008018 0.5654895
#> M17 2.330450 0.000000 0.0000000 0 0.000000 0.0000000

Colony differences in chemical fingerprints

library(vegan)
library(MASS)

Non-metric multidimensional scaling (nMDS) visualizes a distance matrix (Bray-Curtis similarity).
The nMDS algorithm aims to place each individual in a 2-dimensional space such that the between-individual
distances are preserved as well as possible. Axis coordinates are arbitrary and not shown. The plot is better
visualized with colours (see paper) and is shown here for the purpose of demonstration. Mother-offspring
pairs can be identified by labels (e.g. M14, P14).
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scent_mds <- MASS::isoMDS(vegdist(scent))
#> initial value 28.002906
#> iter 5 value 21.594484
#> final value 21.345037
#> converged

vegan::ordiplot(scent_mds, type = "t", ylab = "", xlab = "",axes=FALSE, frame.plot=TRUE)
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Analysis of Similarities (ANOSIM) is a non-parametric test for group differences based on a Bray-curtis (or
any other) similarity matrix. We use the vegan package (Oksanen et al. 2015) for ANOSIM and several other
functions. Most analysis are done for the whole sample as well as for mothers and pups seperately to avoid
pseudoreplication. ANOSIM is based on a permutation test, which is why results can slightly differ from the
paper.

Dissimilarity between the two colonies.
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vegan::anosim(dat = scent, grouping = factors$colony,
distance = "bray", permutations = 1000)

#>
#> Call:
#> vegan::anosim(dat = scent, grouping = factors$colony, permutations = 1000, distance = "bray")
#> Dissimilarity: bray
#>
#> ANOSIM statistic R: 0.5691
#> Significance: 0.000999
#>
#> Permutation: free
#> Number of permutations: 1000

Dissimilarity between mothers from the two colonies.

vegan::anosim(dat = scent[factors$age == 1, ], grouping = factors$colony,
distance = "bray", permutations = 1000)

#>
#> Call:
#> vegan::anosim(dat = scent[factors$age == 1, ], grouping = factors$colony, permutations = 1000, distance = "bray")
#> Dissimilarity: bray
#>
#> ANOSIM statistic R: 0.5748
#> Significance: 0.000999
#>
#> Permutation: free
#> Number of permutations: 1000

Dissimilarity between pups from the two colonies.

vegan::anosim(dat = scent[factors$age == 2, ], grouping = factors$colony,
distance = "bray", permutations = 1000)

#>
#> Call:
#> vegan::anosim(dat = scent[factors$age == 2, ], grouping = factors$colony, permutations = 1000, distance = "bray")
#> Dissimilarity: bray
#>
#> ANOSIM statistic R: 0.556
#> Significance: 0.000999
#>
#> Permutation: free
#> Number of permutations: 1000

Genetic differentiation of the two colonies was assesed through bayesian structure analysis, with the software
“Structure” (Pritchard, Stephens, and Donnelly 2000)

Mother offspring similarity in chemical fingerprints.

Full sample
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vegan::anosim(dat = scent, grouping = factors$family,
distance = "bray", permutations = 1000)

#>
#> Call:
#> vegan::anosim(dat = scent, grouping = factors$family, permutations = 1000, distance = "bray")
#> Dissimilarity: bray
#>
#> ANOSIM statistic R: 0.6723
#> Significance: 0.000999
#>
#> Permutation: free
#> Number of permutations: 1000

Mother offspring similarity within colony 1 (Special study beach)

vegan::anosim(dat = scent[factors$colony == 1, ],
grouping = factors[factors$colony == 1, ]$family,
distance = "bray", permutations = 1000)

#>
#> Call:
#> vegan::anosim(dat = scent[factors$colony == 1, ], grouping = factors[factors$colony == 1, ]$family, permutations = 1000, distance = "bray")
#> Dissimilarity: bray
#>
#> ANOSIM statistic R: 0.5339
#> Significance: 0.000999
#>
#> Permutation: free
#> Number of permutations: 1000

Mother offspring similarity within colony 2 (Freshwater beach)

vegan::anosim(dat = scent[factors$colony == 2, ],
grouping = factors[factors$colony == 2, ]$family,
distance = "bray", permutations = 1000)

#>
#> Call:
#> vegan::anosim(dat = scent[factors$colony == 2, ], grouping = factors[factors$colony == 2, ]$family, permutations = 1000, distance = "bray")
#> Dissimilarity: bray
#>
#> ANOSIM statistic R: 0.4532
#> Significance: 0.000999
#>
#> Permutation: free
#> Number of permutations: 1000

Chemical similarity vs. geographic distance on special study beach

• location data in meters is available for this population as the special study beach on Bird Island provides
an aerial walkway
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Loading X-Y coordinates of each individual.

coord <- read.csv(".\\files\\coordinates_beach1.csv", row.names=1)
head(coord)
#> X Y
#> M15 10 8
#> M19 10 12
#> M2 25 15
#> M26 23 13
#> M27 26 18
#> M28 26 18

Converting coordinates to pairwise euclidian distance matrix.

dist_mat <- as.matrix(dist(coord, method = "euclidian"))

Constructing a bray curtis similarity matrix (from chemical fingerprints) of all individuals from beach 1
(special study beach). We constantly used spearman rank correlation in mantel tests.

scent_bc <- as.matrix(vegan::vegdist(as.matrix(scent[factors$colony == 1, ])),
method = "bray")

Geographic distance vs. chemical similarity in mothers

geo_mum <- dist_mat[1:20, 1:20]
scent_mum <- scent_bc[1:20, 1:20]
vegan::mantel(geo_mum, scent_mum, method = "spearman")
#>
#> Mantel statistic based on Spearman's rank correlation rho
#>
#> Call:
#> vegan::mantel(xdis = geo_mum, ydis = scent_mum, method = "spearman")
#>
#> Mantel statistic r: 0.008091
#> Significance: 0.475
#>
#> Upper quantiles of permutations (null model):
#> 90% 95% 97.5% 99%
#> 0.200 0.256 0.306 0.359
#> Permutation: free
#> Number of permutations: 999

Geographic distance vs. chemical similarity in pups

geo_pup <- dist_mat[21:40, 21:40]
scent_pup <- scent_bc[21:40, 21:40]
vegan::mantel(geo_pup, scent_pup, method = "spearman")
#>
#> Mantel statistic based on Spearman's rank correlation rho
#>
#> Call:
#> vegan::mantel(xdis = geo_pup, ydis = scent_pup, method = "spearman")
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#>
#> Mantel statistic r: 0.06039
#> Significance: 0.304
#>
#> Upper quantiles of permutations (null model):
#> 90% 95% 97.5% 99%
#> 0.164 0.222 0.268 0.329
#> Permutation: free
#> Number of permutations: 999

Correlation between genotype and overall chemical fingerprints.

Relatedness and overall chemical similarity

Load pairwise relatedness (Queller and Goodnight 1989) based on 41 microsatellite markers.

relatedness <- as.matrix(read.csv(".\\files\\relatedness.csv",row.names=1))
head(relatedness[1:6, 1:6])
#> M10 M12 M14 M15 M16 M17
#> M10 NA NA NA NA NA NA
#> M12 -0.09578940 NA NA NA NA NA
#> M14 -0.10861601 -0.16464236 NA NA NA NA
#> M15 -0.03246021 -0.11981456 -0.12591268 NA NA NA
#> M16 0.07639825 0.13027995 0.01176970 -0.02336469 NA NA
#> M17 0.04367833 -0.09591802 -0.06258925 0.03730164 -0.08061711 NA
hist(relatedness)

Histogram of relatedness
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Pairwise bray curtis similarity in chemical fingerprints of all individuals.

scent_bc <- 1-(as.matrix(vegan::vegdist(as.matrix(scent)), method = "bray"))
head(scent_bc[1:6, 1:6])
#> M10 M12 M14 M15 M16 M17
#> M10 1.0000000 0.4913098 0.3029950 0.22560196 0.35280730 0.4108673
#> M12 0.4913098 1.0000000 0.3552582 0.22453963 0.48401295 0.4058738
#> M14 0.3029950 0.3552582 1.0000000 0.12185666 0.38121502 0.4885025
#> M15 0.2256020 0.2245396 0.1218567 1.00000000 0.09922127 0.2028706
#> M16 0.3528073 0.4840130 0.3812150 0.09922127 1.00000000 0.3725530
#> M17 0.4108673 0.4058738 0.4885025 0.20287064 0.37255296 1.0000000

Mantel test between genetic relatedness and bray curtis similarity in chemical fingerprints of
all individuals.

vegan::mantel(relatedness, scent_bc, method = "spearman", permutation = 1000)
#>
#> Mantel statistic based on Spearman's rank correlation rho
#>
#> Call:
#> vegan::mantel(xdis = relatedness, ydis = scent_bc, method = "spearman", permutations = 1000)
#>
#> Mantel statistic r: 0.07231
#> Significance: 0.005994
#>
#> Upper quantiles of permutations (null model):
#> 90% 95% 97.5% 99%
#> 0.0398 0.0487 0.0573 0.0632
#> Permutation: free
#> Number of permutations: 1000

We find a significant relationship between the overall chemical fingerprints and genetic relatedness. However,
we are likely to have a problem of pseudoreplication here. For that reason, we are analysing mothers and
pups seperately.

Fur seal mothers: mantel test between genetic relatedness and bray curtis similarity of chemical
fingerprints.

vegan::mantel(relatedness[factors$age == 1, factors$age == 1],
scent_bc[factors$age == 1, factors$age == 1],
method = "spearman", permutation = 1000)

#>
#> Mantel statistic based on Spearman's rank correlation rho
#>
#> Call:
#> vegan::mantel(xdis = relatedness[factors$age == 1, factors$age == 1], ydis = scent_bc[factors$age == 1, factors$age == 1], method = "spearman", permutations = 1000)
#>
#> Mantel statistic r: 0.05938
#> Significance: 0.10689
#>
#> Upper quantiles of permutations (null model):
#> 90% 95% 97.5% 99%
#> 0.0603 0.0757 0.0900 0.1059
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#> Permutation: free
#> Number of permutations: 1000

Fur seal pups: mantel test between genetic relatedness and bray curtis similarity of chemical
fingerprints.

vegan::mantel(relatedness[factors$age == 2, factors$age == 2],
scent_bc[factors$age == 2, factors$age == 2],
method = "spearman", permutation = 1000)

#>
#> Mantel statistic based on Spearman's rank correlation rho
#>
#> Call:
#> vegan::mantel(xdis = relatedness[factors$age == 2, factors$age == 2], ydis = scent_bc[factors$age == 2, factors$age == 2], method = "spearman", permutations = 1000)
#>
#> Mantel statistic r: 0.02985
#> Significance: 0.25475
#>
#> Upper quantiles of permutations (null model):
#> 90% 95% 97.5% 99%
#> 0.0587 0.0732 0.0894 0.1055
#> Permutation: free
#> Number of permutations: 1000

Correlation between heterozygosity (sMLH) and diversity (number of com-
pounds) of chemical fingerprints

• The function sMLH is part of the inbreedR package, currently available on GitHub.

library(inbreedR)
# ?inbreedR

Loading raw genotypes and calculating standardised multilocus heterozygosity (sMLH) based on 41 markers.
* inbreedRpackage requires a special format, see ?convert_raw for more information‘*

genotypes <- read.table(".\\files\\genotypes.txt", row.names=1)
genotypes[1:6, 1:6]
#> V2 V3 V4 V5 V6 V7
#> M10 168 184 237 241 164 164
#> M12 168 168 233 233 164 164
#> M14 168 170 231 237 164 166
#> M15 168 182 227 229 164 164
#> M16 168 168 231 233 164 164
#> M17 166 172 231 237 164 164
genotypes_formatted <- inbreedR::convert_raw(genotypes, miss = NA)
heterozygosity <- inbreedR::sMLH(genotypes_formatted)

Number of compounds per individual.
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num_comp <- as.vector(apply(scent, 1, function(x) length(x[x>0])))

Linear model of heterozygosity on number of compounds in mothers

A clear association between sMLH and chemical complexity in mothers but not pups.

het_mum <- heterozygosity[factors$age == 1]
num_comp_mum <- num_comp[factors$age==1]
summary(lm(het_mum ~ num_comp_mum))
#>
#> Call:
#> lm(formula = het_mum ~ num_comp_mum)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.199148 -0.049220 0.005588 0.047729 0.161623
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.9339147 0.0282437 33.066 <2e-16 ***
#> num_comp_mum 0.0015914 0.0006936 2.294 0.0272 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.08633 on 39 degrees of freedom
#> Multiple R-squared: 0.1189, Adjusted R-squared: 0.09633
#> F-statistic: 5.264 on 1 and 39 DF, p-value: 0.02724

Plotting with ggplot2, an implementation of the grammar of graphics (Wickham 2009)
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in Fur seal mothers

Linear model of heterozygosity on number of compounds in pups

het_pup <- heterozygosity[factors$age == 2]
num_comp_pup <- num_comp[factors$age==2]
summary(lm(het_pup ~ num_comp_pup))
#>
#> Call:
#> lm(formula = het_pup ~ num_comp_pup)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.199070 -0.067303 -0.001971 0.050500 0.152902
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.9940863 0.0235812 42.156 <2e-16 ***
#> num_comp_pup 0.0003928 0.0005542 0.709 0.483
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.08035 on 39 degrees of freedom
#> Multiple R-squared: 0.01272, Adjusted R-squared: -0.0126
#> F-statistic: 0.5025 on 1 and 39 DF, p-value: 0.4826
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Strength of correlation between sMLH and number of compounds increases with
an increasing number of genetic markers in mothers.

The resample_loci() function samples an increasing subset of loci, calculates sMLH and correlates with a
vector y (here: number of compounds in chemical fingerprints).

resample_loci <- function(genotypes, y, num_iter = 1000) {
# genotypes in inbreedR format. See ?inbreedR
# y is a vector to correlate with sMLH
# num_iter is the number of resamplings per added locus

# calculate number of loci
num_loci <- ncol(genotypes)
results <- data.frame(matrix(nrow = num_iter, ncol = num_loci))
for (i in seq_along((1: num_loci))){

for (k in seq_along(1:num_iter)) {
loci_ind <- sample(1:num_loci, i, replace = FALSE)
het <- inbreedR::sMLH(genotypes[, loci_ind])
results[k, i] <- cor(het[1:41],y) # heterozygosity subsetted for mothers
}

}
results
}

# Converting genotypes into the right format
genotypes_formatted <- inbreedR::convert_raw(genotypes, miss = NA)
# Resampling 1 - 40 loci each 1000 times, compute sMLH and correlate with number of compounds
resample_mums <- resample_loci(genotypes_formatted, num_comp_mum, num_iter = 1000)

Calculating summary statistics for the resampling output: mean, sd, se of the correlations per subset of
markers.

sum_results <- function(resampling_output) {
mean_cor <- apply(resampling_output,2,mean, na.rm=T)
sd_cor <- apply(resampling_output,2,sd, na.rm=T)
se_cor <- sd_cor/(sqrt(nrow(resampling_output)))
sum_results <- data.frame(locnum = 1:ncol(resampling_output),

cormean = mean_cor, corsd = sd_cor, corse = se_cor)
}

results_mums <- sum_results(resample_mums)

Plotting mean correlation of heterozygosity (estimated by an increasing number of markers)
with number of compounds in chemical fingerprints for Fur seal mothers.

Pups are not shown here for simplicity and to avoid code replication. For the full figure see the results section
of the paper

# plotting
library(grid)
ggplot2::ggplot(results_mums, aes(x = locnum, y = cormean)) +

geom_line(size = 0.6, colour = "black") +
geom_errorbar(aes(ymin = cormean-corse, ymax = cormean+corse),

width=0.8, alpha=0.7, size = 0.8, colour = "black") +
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geom_point(size = 2, shape = 12) +
theme_minimal(base_size = 12) +
theme(axis.title.x = element_text(vjust= -2 ,size = 12),

axis.title.y = element_text(vjust=3,size = 12),
axis.ticks.x = element_blank(),
axis.ticks.y = element_blank(),
plot.margin = (unit(c(.5, .5, 2, 2), "cm"))) +

#geom_hline(yintercept=0.305) +
ylab("r (sMLH, ncomp) +- se") +
xlab("number of loci") +
labs(title = "r between number of compounds \nand sMLH estimated \nfrom an increasing number of loci")
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Estimation of identity disequilibrium g2 with the inbreedR package. (can diverge
slightly from the RMES program)

Instead to just finding a correlation between heterozygosity and a trait such as chemical complexity, one can
ask whether variation in inbreeding (so called-general effects) is a potential cause. This can be measured
with a parameter called g2 (David et al. 2007), that assesses identity disequilibrium through quantification of
excess double heterozygote loci. We are currently working on the inbreedR package, which provides functions
for calculation g2 with both microsatellites and SNPs.
Calculate g2.
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g2 <- inbreedR::g2_microsats(genotypes_formatted, nperm = 1000, nboot = 1000, CI = 0.95)

#>
#> Data: 82 observations at 41 markers
#> Function call = inbreedR::g2_microsats(genotypes = genotypes_formatted, nperm = 1000, nboot = 1000, CI = 0.95)
#>
#> g2 = 0.00241214, se = 0.001451272
#>
#> confidence interval
#> 2.5% 97.5%
#> -0.0002952178 0.0054104109
#>
#> p (g2 > 0) = 0.031 (based on 1000 permutations)

Flexibility of the g2 functions in the inbreedR package allow for further analysis of the parameter. A good
start is estimate g2 from an increasing number of subsampled loci.

resampling_g2 <- resample_loc_g2(genotypes_formatted, niter = 1000)

results_g2 <- sum_results(resampling_g2)

Plotting the mean +- sd of g2 estimated from increasing amount of microsats.

# plotting
library(grid)
ggplot2::ggplot(results_g2, aes(x = locnum, y = cormean)) +

geom_line(size = 0.6, colour = "black") +
geom_errorbar(aes(ymin = cormean-corsd, ymax = cormean+corsd),

width=0.8, alpha=0.7, size = 0.8, colour = "black") +
geom_point(size = 2, shape = 16) +
theme_minimal(base_size = 12) +
theme(axis.title.x = element_text(vjust= -2 ,size = 12),

axis.title.y = element_text(vjust=3,size = 12),
axis.ticks.x = element_blank(),
axis.ticks.y = element_blank(),
plot.margin = (unit(c(.5, .5, 2, 2), "cm"))) +

#geom_hline(yintercept=0.305) +
ylab("g2") +
xlab("number of loci") +
labs(title = "g2 estimated from an increasing number of loci")
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Factor analysis on the chemical compounds data with the package HDMD.

HDMD (McFerrin 2013) allows for doing a Factor analysis with high dimensional data(where the number of
variables exceeds the number of observations) by calculating a general inverse matrix.

library(HDMD)
library(minmodelr)

Factor analysis and extraction of factor scores for the first 4 factors. Promax rotation of the factors allows
them to be non-orthogonal and thus correlated. After FA, the factor scores for each individual on all 4 factors
are extracted.

# factor analysis with 4 factors, promax rotation ------------------------------
scent_fa <- HDMD::factor.pa.ginv(scent, nfactors = 4,

prerotate = T,rotate = "promax",
scores = T, m = 3)

#> Warning in cor.smooth(R): Matrix was not positive definite, smoothing was
#> done
#> Could not solve for inverse correlation. Using general inverse ginv(r)
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fa_scores <- as.data.frame(scent_fa$scores)
head(fa_scores)
#> F1 F2 F3 F4
#> M10 0.21501860 -0.8384633 0.02809373 0.41819811
#> M12 0.00144057 -0.4989538 0.19093716 0.63217100
#> M14 -0.32163481 -0.7076035 0.16407820 -0.18508919
#> M15 -0.34857816 -0.5187462 0.12530472 -0.93750096
#> M16 -0.38997409 -0.1759757 0.53663454 1.18679542
#> M17 -0.10514763 -0.6294724 0.18209318 0.02876237

The eigenvalue course seen in the screeplot allows for decisions on the number of factors to retain.

# screeplot, 4 factors left to the "scree"
plot(scent_fa$values[1:8], type="b", ylab = "eigenvalue", xlab = "factor",

main = "Screeplot")
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Plotting the distribution of factor scores seperately for each colony. Similar distributions suggest the
compounds which are represented by a given factor to be similarly distributed across colonies and could
thus be of potential genetic origin, while different distributions as in factor 4 suggest this factor to represent
environmentally influenced compounds.
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# distribution of factor scores
df <- cbind(fa_scores, factors["colony"])
df$colony <- as.factor(df$colony)

for (i in c(1,2,4)) {
plot_all <- ggplot(df, aes_string(x = paste("F", i, sep = ""), fill = "colony")) +

geom_density(alpha=0.8, size=0.5, aes(fill = colony),adjust=1.5) +
scale_fill_manual(values = c("blue","red")) +
guides(fill=guide_legend(title=NULL)) +
theme_minimal(base_size = 12) +
theme(legend.position="none") +
scale_x_continuous(breaks = c(seq(from = -1, to = 6, by = 1))) +
scale_y_continuous(breaks = c(seq(from = 0, to = 1.4, by = 0.4))) +
xlab(paste("Factor", i, sep = " ")) +
ylab("Density")

assign(paste("f", i, "_plot", sep = ""), plot_all)
}

Multiplot function from cookbook-r.com for plotting multiple ggplots

multiplot <- function(..., plotlist=NULL, cols) {
require(grid)

# Make a list from the ... arguments and plotlist
plots <- c(list(...), plotlist)

numPlots = length(plots)

# Make the panel
plotCols = cols # Number of columns of plots
plotRows = ceiling(numPlots/plotCols) # Number of rows needed, calculated from # of cols

# Set up the page
grid.newpage()
pushViewport(viewport(layout = grid.layout(plotRows, plotCols)))
vplayout <- function(x, y)

viewport(layout.pos.row = x, layout.pos.col = y)

# Make each plot, in the correct location
for (i in 1:numPlots) {

curRow = ceiling(i/plotCols)
curCol = (i-1) %% plotCols + 1
print(plots[[i]], vp = vplayout(curRow, curCol ))

}

}

Plotting all factor distributions.

multiplot(f1_plot, f2_plot, f4_plot, cols = 2)
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Linear model of heterozygosity on factors (factor scores) as explanatory variables in mothers.

# bind heterozygosity and the factor scores in one data.frame and subset mothers
het_df <- cbind(heterozygosity, fa_scores)[factors$age == 1, ]
het_model <- lm(heterozygosity ~., data=het_df)
summary(het_model)
#>
#> Call:
#> lm(formula = heterozygosity ~ ., data = het_df)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.19439 -0.06271 0.01210 0.04769 0.14674
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.987971 0.013037 75.780 <2e-16 ***
#> F1 0.029393 0.012288 2.392 0.0221 *
#> F2 0.027521 0.011898 2.313 0.0265 *
#> F3 0.004033 0.012964 0.311 0.7575
#> F4 -0.009617 0.014180 -0.678 0.5020
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.08315 on 36 degrees of freedom
#> Multiple R-squared: 0.2455, Adjusted R-squared: 0.1616
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#> F-statistic: 2.928 on 4 and 36 DF, p-value: 0.03406

While Factor1 and Factor2 seem to represent substances that are accociated with heterozygosity, Factor
3 and Factor 4 clearly don´t. To simplify the model we used deletion testing (Crawley, Statistics). The
minmodelr package contains some helper functions for this task. See ?MinMod, ?DelTestVar. We don´t
generally recommend a deletion testing procedure. In our case, results are clear and we use it for simplicity
rather than for fishing significant results.

library(devtools)
# install_github("mastoffel/minmodelr")
library(minmodelr)

het_reduced <- minmodelr::MinMod(het_df)
#>
#> Call:
#> glm(formula = depVar ~ ., family = family, data = bestmodeldf)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -0.191202 -0.060032 0.009789 0.057485 0.155757
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.98814 0.01278 77.328 <2e-16 ***
#> F1 0.02783 0.01167 2.385 0.0222 *
#> F2 0.02809 0.01164 2.414 0.0207 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 0.006649744)
#>
#> Null deviance: 0.32986 on 40 degrees of freedom
#> Residual deviance: 0.25269 on 38 degrees of freedom
#> AIC: -84.303
#>
#> Number of Fisher Scoring iterations: 2
# extract data frame
het_reduced_df <- het_reduced[[1]]
# extract reduced model
het_reduced_mod <- het_reduced[[2]]
# deletion testing for both variables in the reduced model. See ?DelTestVar
table <- minmodelr::DelTestVar(het_reduced_df)
#> Estimate Deviance Explained F P (F-test)
#> (Intercept) 0.98814218 NA NA NA
#> F1 0.02783316 11.46936 5.689346 0.02215967
#> F2 0.02808759 11.74642 5.826780 0.02071002
#> P (Chisquared-test)
#> (Intercept) NA
#> F1 0.01706822
#> F2 0.01578399
# deviance explained by the reduced model
dev_expl <- (het_reduced_mod$null.deviance - het_reduced_mod$deviance) / het_reduced_mod$null.deviance
summary(het_reduced_mod)
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#>
#> Call:
#> glm(formula = depVar ~ ., family = family, data = bestmodeldf)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -0.191202 -0.060032 0.009789 0.057485 0.155757
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.98814 0.01278 77.328 <2e-16 ***
#> F1 0.02783 0.01167 2.385 0.0222 *
#> F2 0.02809 0.01164 2.414 0.0207 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 0.006649744)
#>
#> Null deviance: 0.32986 on 40 degrees of freedom
#> Residual deviance: 0.25269 on 38 degrees of freedom
#> AIC: -84.303
#>
#> Number of Fisher Scoring iterations: 2

Creating a new variable F1F2 which is the sum of the two factor scores and using this variable as predictor
in a linear model of heterozygosity.

# sum of factors as variable
het_df$F1F2 <- het_df$F1 + het_df$F2
table <- minmodelr::DelTestVar(as.data.frame(cbind(het_df$heterozygosity, het_df$F1F2)))
#> Estimate Deviance Explained F P (F-test)
#> (Intercept) 0.98813169 NA NA NA
#> V2 0.02796073 23.39391 11.90979 0.001356642
#> P (Chisquared-test)
#> (Intercept) NA
#> V2 0.0005583969
summary(lm(heterozygosity ~ F1F2, data = het_df))
#>
#> Call:
#> lm(formula = heterozygosity ~ F1F2, data = het_df)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.191204 -0.060060 0.009766 0.057466 0.155764
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.988132 0.012596 78.449 < 2e-16 ***
#> F1F2 0.027961 0.008102 3.451 0.00136 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.08049 on 39 degrees of freedom
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#> Multiple R-squared: 0.2339, Adjusted R-squared: 0.2143
#> F-statistic: 11.91 on 1 and 39 DF, p-value: 0.001357

Linear model of genetic relatedness on factor scores as explanatory variables for mothers.
Pairwise genetic relatedness is represented as a matrix. To model the relationship between relatedness and
factor scores we created a matrix for each factor, whereby each pairwise value represents the difference in
factor scores for a pair of seals.
get_pairdiff() creates these matrices. We based these analysis on mothers and pups seperately.

get_pairdiff <- function(relate, scores, df=F) {
# creates data.frame with
# pairwise differences in factor scores
# input should be: relatedness data frame (lower triangular),
# data frame with factor scores in columns
# if df=TRUE, get_pairdiff will return a list of score-difference
# dataframes (for each component/factor) with pairwise pc-differences.
# make sure to have data.frames
relate <- as.data.frame(relate)
scores <- as.data.frame(scores)
# copy similarity matrix and clear
score_mat <- relate
score_mat[, ] <- NA
# get vector of pairwise-rownames
allnames <- vector()
for (i in 1:ncol(relate)) {

for (k in 1:nrow(relate)) {
nametemp <- paste(names(relate)[i],

row.names(relate)[k], sep = "")
allnames <- append(allnames, nametemp)

}
}
# roll out as vector
relate_vec <- unlist(relate)
# label the rows
names(relate_vec) <- allnames
# delete na´s
relate_vec <- relate_vec[!is.na(relate_vec)]
# get new row-names vector
pairnamessub <- names(relate_vec)
# create raw data frame
fac_diff_all <- data.frame("relatedness"= relate_vec)
# construct similarity matrix out of pairwise differences in factors
names <- rownames(relate)
row.names(scores) <- names
fac_diff_mats <- list()

for (z in 1:ncol(scores)) {
for (i in names) {

for (k in names) {
if (!(is.na(relate[i,k]))) {

diff_fac <- abs(scores[i,z] - scores[k,z])
score_mat[i,k] <- diff_fac
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}
}

}

# create list of data frames, containing difference matrices per Factor
fac_diff_mats <- c(fac_diff_mats, list(score_mat))

# turn into vector
factor_diff <- as.vector(as.matrix(score_mat))
factor_diff <- factor_diff[!is.na(factor_diff)]
fac_diff_all <- cbind(fac_diff_all, factor_diff)

}
## check argument for what to return
if (df == T) {

names(fac_diff_mats) <- names(scores)
return(fac_diff_mats)

} else if (df == F) {
names(fac_diff_all) <- c("relatedness",names(scores))
row.names(fac_diff_all) <- pairnamessub
return(fac_diff_all)

}
}

Creation of 4 pairwise distance matrices for each factor.

# source("get_pairdiff.R")
fa_diff_mums <- get_pairdiff(relatedness[factors$age == 1, factors$age == 1],

fa_scores[factors$age == 1, ], df = F)

# assign pairwise difference factor matrices to names
for (i in seq_along(1:4)) {

assign(paste("f", i, "_diff", sep=""), fa_diff_mums[, i+1])
}

The ecodist package (Goslee and Urban 2007) can handle multiple distance matrices by doing a partial mantel
test.
Every partial mantel test just tests for the association with the first response, while the other are permutated

rel_dist <- as.dist(relatedness[factors$age == 1, factors$age == 1])
ecodist::mantel(rel_dist ~ f1_diff + f2_diff + f3_diff + f4_diff, mrank = T, nperm = 1000)
#> mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
#> -0.1225667 0.9790000 0.0220000 0.0380000 -0.1614097 -0.0680768
ecodist::mantel(rel_dist ~ f2_diff + f1_diff + f3_diff + f4_diff, mrank = T)
#> mantelr pval1 pval2 pval3 llim.2.5%
#> -0.047920124 0.802000000 0.199000000 0.409000000 -0.087205130
#> ulim.97.5%
#> -0.005076159
ecodist::mantel(rel_dist ~ f3_diff + f2_diff + f1_diff + f4_diff, mrank = T)
#> mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
#> 0.08900545 0.06100000 0.94000000 0.12200000 0.04792259 0.12570957
ecodist::mantel(rel_dist ~ f4_diff + f3_diff + f2_diff + f1_diff, mrank = T)
#> mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
#> 0.052327208 0.118000000 0.883000000 0.247000000 0.002718941 0.095575727
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Linear model for associations between genetic relatedness and factor scores as explanatory
variables for pups.

fa_diff_pups <- get_pairdiff(relatedness[factors$age == 2, factors$age == 2],
fa_scores[factors$age == 2, ], df = F)

for (i in seq_along(1:4)) {
assign(paste("f", i, "_diff", sep=""), fa_diff_pups[, i+1])

}

rel_dist <- as.dist(relatedness[factors$age == 2, factors$age == 2])
ecodist::mantel(rel_dist ~ f1_diff + f2_diff + f3_diff + f4_diff, mrank = T)
#> mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
#> 0.02435999 0.31700000 0.68400000 0.64300000 -0.02535968 0.05825877
ecodist::mantel(rel_dist ~ f2_diff + f1_diff + f3_diff + f4_diff, mrank = T)
#> mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
#> 0.01340994 0.39600000 0.60500000 0.81500000 -0.02573603 0.05067160
ecodist::mantel(rel_dist ~ f3_diff + f2_diff + f1_diff + f4_diff, mrank = T)
#> mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
#> 0.08487309 0.08400000 0.91700000 0.15100000 0.03461989 0.13741796
ecodist::mantel(rel_dist ~ f4_diff + f3_diff + f2_diff + f1_diff, mrank = T)
#> mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
#> -0.06239643 0.88700000 0.11400000 0.20700000 -0.10709076 -0.02315609

Colony differences in factor scores: Just factor 4 shows significant differences.

col_df <- cbind(factors["colony"], fa_scores)
col_reduced <- minmodelr::MinMod(col_df)
#>
#> Call:
#> glm(formula = depVar ~ ., family = family, data = bestmodeldf)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -0.8127 -0.2569 -0.1038 0.2719 0.7243
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.51220 0.03696 40.91 < 2e-16 ***
#> F4 0.38454 0.03791 10.14 5.08e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 0.1120233)
#>
#> Null deviance: 20.4878 on 81 degrees of freedom
#> Residual deviance: 8.9619 on 80 degrees of freedom
#> AIC: 57.179
#>
#> Number of Fisher Scoring iterations: 2
col_reduced_df <- col_reduced[[1]]
# dev_expl <- (col_reduced_df$null.deviance - col_reduced_df$deviance) / col_reduced_df$null.deviance
table <- minmodelr::DelTestVar(col_reduced[[1]])
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#> Estimate Deviance Explained F P (F-test)
#> (Intercept) 1.5121951 NA NA NA
#> F4 0.3845353 56.25756 102.8887 5.082064e-16
#> P (Chisquared-test)
#> (Intercept) NA
#> F4 3.545071e-24

Identification of substance subsets.

# subsets and identification
library(vegan)
library(ggplot2)
library(dplyr)
library(magrittr)
library(vegan)
library(reshape2)

Similarity percentages analysis (simper) identifies the contribution of a specific compound to group similarity
/ dissimilarity. ANOSIM was used to test whether a small subset of the compounds with the highest
contributions shows significant patterns.

Identification of best substances encoding mother-offspring similarity.

For this analysis we have 41 groups (mother-offspring pairs) and want to look at withing group similarities
rather then between group dissimilarities. This was done in Primer-E, as the simper function from the vegan
package computes discriminating compounds, rather then compounds that make a mother-pup pair unique
(although both sets overlap of course) .

# results from simper analysis in Primer-E
mp_simp <- read.csv(".\\files\\simper_mp_results.csv", colClasses = c("character", "numeric"))
mp_simp
#> comp contrib
#> 1 19.72268293 15.54
#> 2 15.45769231 12.25
#> 3 26.78859155 11.97
#> 4 16.3974359 11.30
#> 5 19.52538462 10.87
#> 6 21.405 8.49
#> 7 37.56363636 6.48
#> 8 15.62272727 6.48
#> 9 33.63655172 6.28
#> 10 30.80365385 6.03
#> 11 20.361875 5.34
#> 12 17.40942623 4.79

Mother offspring similarity based on a Bray-curtis similarity matrix which was computed
from just the subset of 12 top compounds from the SIMPER analysis is highly significant,
both overall, as well as within colonies.

Full sample
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vegan::anosim(dat = scent[mp_simp$comp], grouping = factors$family,
distance = "bray", permutations = 1000)

#>
#> Call:
#> vegan::anosim(dat = scent[mp_simp$comp], grouping = factors$family, permutations = 1000, distance = "bray")
#> Dissimilarity: bray
#>
#> ANOSIM statistic R: 0.6787
#> Significance: 0.000999
#>
#> Permutation: free
#> Number of permutations: 1000

Within colony 1 (Special study beach)

vegan::anosim(dat = scent[factors$colony == 1, mp_simp$comp],
grouping = factors[factors$colony == 1, ]$family,
distance = "bray", permutations = 1000)

#>
#> Call:
#> vegan::anosim(dat = scent[factors$colony == 1, mp_simp$comp], grouping = factors[factors$colony == 1, ]$family, permutations = 1000, distance = "bray")
#> Dissimilarity: bray
#>
#> ANOSIM statistic R: 0.5304
#> Significance: 0.000999
#>
#> Permutation: free
#> Number of permutations: 1000

Within colony 2 (Freshwater beach)

vegan::anosim(dat = scent[factors$colony == 2, mp_simp$comp],
grouping = factors[factors$colony == 2, ]$family,
distance = "bray", permutations = 1000)

#>
#> Call:
#> vegan::anosim(dat = scent[factors$colony == 2, mp_simp$comp], grouping = factors[factors$colony == 2, ]$family, permutations = 1000, distance = "bray")
#> Dissimilarity: bray
#>
#> ANOSIM statistic R: 0.3066
#> Significance: 0.002997
#>
#> Permutation: free
#> Number of permutations: 1000

Identification of best substances encoding colony dissimilarity.

Using simper from the vegan package to find the important substances for discriminating between the two
colonies. And sorting them subsequently in order of contribution to colony dissimilarity.

# simper analysis
simp_colony <- vegan::simper(scent, factors$colony)
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# getting 15 best substances and their contribution to colony dissimilarity
simp_colony_names <- rownames(summary(simp_colony, ordered = TRUE)[[1]])[1:15]
contribution <- summary(simp_colony, ordered = TRUE)[[1]]$contr[1:15]

# indices of colony substances (58,62,68,74,86,89,90,98,106,107,110,164,181,189,211)
ind_col <- paste(which(names(scent)%in%simp_colony_names), collapse = ",")

# connect to data frame and compute contribution in percent
col_simp <- data.frame(comp = simp_colony_names, contrib = contribution*100, stringsAsFactors = FALSE)
col_simp
#> comp contrib
#> 1 15.45769231 3.006785
#> 2 16.3974359 2.419310
#> 3 26.78859155 2.069715
#> 4 19.52538462 1.965096
#> 5 21.405 1.894868
#> 6 21.34820513 1.671251
#> 7 19.72268293 1.669923
#> 8 30.80365385 1.482931
#> 9 38.5183871 1.440400
#> 10 17.40942623 1.330158
#> 11 20.51086207 1.288827
#> 12 33.63655172 1.266612
#> 13 21.57529412 1.208037
#> 14 15.74219178 1.180692
#> 15 19.66514286 1.128883

Colony dissimilarity based on 15 compounds.

# overall (number of permutations is 1000 instead of 10,000 in the paper)
anosim(dat = scent[col_simp$comp], grouping = factors$colony,

distance = "bray", permutations = 1000)
#>
#> Call:
#> anosim(dat = scent[col_simp$comp], grouping = factors$colony, permutations = 1000, distance = "bray")
#> Dissimilarity: bray
#>
#> ANOSIM statistic R: 0.7726
#> Significance: 0.000999
#>
#> Permutation: free
#> Number of permutations: 1000

Identification of substanced encoding relatedness.

All the following analyses are shown for the subset of mothers.

The core of the idea is to use a bootstrapping procedure on the BIO-ENV function, originally by Clarke (Clarke
and Warwick 2001), which was modified (Taylor 2014) to work with a bray curtis similarity matrix. For
details see the methods part of the paper. The function is built to run on parallel with snowfall (Knaus 2013)
on a server or similar, but still takes a couple of days to finish.

26



Additional packages used are Hadley Wickham´s dplyr (Wickham and Francois 2015) and stringr (Wickham
2015). First, the BIO-ENV function code is presented, followed by the bootstrap function.

bio.env <- function(fix.mat, var.mat,
fix.dist.method="bray", var.dist.method="euclidean",
scale.fix=FALSE, scale.var=TRUE,
output.best=10,
var.max=ncol(var.mat)

){
# if(dim(fix.mat)[1] != dim(var.mat)[1]){stop("fixed and variable matrices must have the same number of rows")}
if(var.max > dim(var.mat)[2]){stop("var.max cannot be larger than the number of variables (columns) in var.mat")}

require(vegan)

combn.sum <- sum(factorial(ncol(var.mat))/(factorial(1:var.max)*factorial(ncol(var.mat)-1:var.max)))

if(scale.fix){fix.mat<-scale(fix.mat)}else{fix.mat<-fix.mat}
if(scale.var){var.mat<-scale(var.mat)}else{var.mat<-var.mat}
# fix.dist <- vegdist(fix.mat, method=fix.dist.method)
fix.dist <- fix.mat
RES_TOT <- c()
best.i.comb <- c()
iter <- 0
for(i in 1:var.max){

var.comb <- combn(1:ncol(var.mat), i, simplify=FALSE)
RES <- data.frame(var.incl=rep(NA, length(var.comb)), n.var=i, rho=0)
for(f in 1:length(var.comb)){

iter <- iter+1
var.dist <- vegdist(as.matrix(var.mat[,var.comb[[f]]]), method=var.dist.method)
temp <- suppressWarnings(cor.test(fix.dist, var.dist, method="spearman"))
RES$var.incl[f] <- paste(var.comb[[f]], collapse=",")
RES$rho[f] <- temp$estimate
if(iter %% 100 == 0){print(paste(round(iter/combn.sum*100, 3), "% finished"))}

}

order.rho <- order(RES$rho, decreasing=TRUE)
best.i.comb <- c(best.i.comb, RES$var.incl[order.rho[1]])
if(length(order.rho) > output.best){

RES_TOT <- rbind(RES_TOT, RES[order.rho[1:output.best],])
} else {

RES_TOT <- rbind(RES_TOT, RES)
}

}
rownames(RES_TOT)<-NULL

if(dim(RES_TOT)[1] > output.best){
order.by.best <- order(RES_TOT$rho, decreasing=TRUE)[1:output.best]

} else {
order.by.best <- order(RES_TOT$rho, decreasing=TRUE)

}
OBB <- RES_TOT[order.by.best,]
rownames(OBB) <- NULL

order.by.i.comb <- match(best.i.comb, RES_TOT$var.incl)
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OBC <- RES_TOT[order.by.i.comb,]
rownames(OBC) <- NULL

out <- list(
order.by.best=OBB,
order.by.i.comb=OBC,
best.model.vars=paste(colnames(var.mat)[as.numeric(unlist(strsplit(OBB$var.incl[1], ",")))], collapse=",") ,
best.model.rho=OBB$rho[1]

)
out

}

################ BIO-ENV bootstrap procedure ###################################
#### run seperately on multicore server #####
#### aim: resampling test for finding the substances associated with genetic
#### relatedness. Basic assumption: Each variable will be tested in many different
#### environments (individuals, other variables), which will prevent spurious
#### correlations, as the really important substances will occur in best subsets
#### in many different constellations. (see methods section)

# parallel computing using 40 cores, takes some days nevertheless and is just
# shown here.

library(vegan)
library(stringr)
library(dplyr)
library(snow)
library(snowfall)

# number of cores
ncores <- 2
# subset
scent_mum <- filter(scent, factors$age == 1)
relate_mum <- relatedness[factors$age == 1, factors$age == 1]

# initialise results vector
all_best <- vector()

# initialise cluster
snowfall::sfInit(parallel=TRUE, cpus=ncores, type="SOCK")

# export libraries and main function to all cores
snowfall::sfSource("bio.env.R")
snowfall::sfLibrary(vegan)
snowfall::sfLibrary(stringr)
snowfall::sfLibrary(dplyr)

bootstrap <- function(iter_comp) { # main resampling function
for (i in 1:500) {

# sample 20 out of 41 mothers, indices
ind_obs <- sort(sample(1:41, size = 20, replace = F))
# subset relate_mum and scent_mum
reltemp <- 1-as.dist(relate_mum[ind_obs, ind_obs])
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abundtemp <- scent_mum[ind_obs, ]
for (i in iter_comp) {

# sample 10 compounds
index_comps <- sort(sample(1:213, size = 10, replace = F))
abundtemp_sub <- abundtemp[, index_comps]
# get vector with 0 for null-column and 1 for non-null column
nullcomps <- apply(abundtemp_sub, 2, function(x) sum(x>0))
abundtemp_sub <- subset(abundtemp_sub,

subset = c(rep(TRUE,nrow(abundtemp_sub))),
select = (nullcomps >= 2))

# new iteration if too less substances left
if (ncol(abundtemp_sub) <= 2) next
# main function: bio.env finds subset that mostly correlates
# with relatedness
results <- bio.env(reltemp, abundtemp_sub,

var.dist.method = "bray",
scale.fix = F, scale.var = F)

mods <- results$best.model.vars
best <- unlist(str_split(mods, ","))
all_best <- append(all_best, best)
# write(best, file = "best.txt", append = TRUE, sep = " ")

}
}
return(all_best)

}
# export objects
snowfall::sfExportAll(except = NULL, debug = FALSE)
snowfall::sfClusterEval(ls())
# create list of 500 iterations for all cores
vals <- list()
for (i in 1:ncores) {

vals[[i]] <- 1:500
}
# run analysis
# best is a list of all best subsets
best <- snowfall::sfLapply(vals, bootstrap)
# stop cluster
sfStop()
# bring all results
results <- unlist(best)

############################## END #############################################

Analysing results from the BIO-ENV bootstrap analysis.

best_mums is a data frame containing the number of occurences of each variable in the best subset from the
BIO-ENV bootstrap analysis. Substances, that were retained more often are therefore likely to be genuinly
associated with genetic relatedness.

# substance occurences are sorted in the table
best_mums <- read.csv("files/bootstrap_mums.csv",row.names=1)

To analyse how many of these compounds are really important, the idea is to take an increasing number of
“best” compounds and compute a mantel test with relatedness for each of the subsets. The subsequent plot
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shows a nice peak, which could be seen as the optimal number of chemicals encoding relatedness.

# subset mothers
scent_mum <- dplyr::filter(scent, factors$age == 1)
relate_mum <- 1-relatedness[factors$age == 1, factors$age == 1]

sub_names_mums <- row.names(best_mums)

statm <- vector()
sigm <- vector()

# compute mantelR for an increasing set of best substances
for (i in 2:100) {

bc_dist <- vegan::vegdist(scent_mum[, sub_names_mums[1:i]], method = "bray")
mod <- vegan::mantel(relate_mum, bc_dist, na.rm = T, method = "spearman")
statm <- append(statm, mod$statistic)
sigm <- append(sigm, mod$sig)

}

stat_df <- data.frame(num_comps = 1:length(statm), mantelR = statm)

Plotting mantelR for an increasing number of best substances.

library(grid)
# simple plot
ggplot2::ggplot(stat_df, aes(x = num_comps, y = mantelR)) +

stat_smooth(se = FALSE, span = 0.16, size = 1.3, method = "loess") +
geom_point(colour = "black", size = 3, alpha = 0.8) +
theme_minimal(base_size = 12) +
theme(strip.text.x = element_text(vjust=1,size = 12),

axis.title.x = element_text(vjust= -2 ,size =12),
axis.title.y = element_text(vjust=3,size = 12),
axis.ticks.x = element_blank(),
axis.ticks.y = element_blank(),
plot.margin = (unit(c(.5, .5, 2, 2), "cm"))) +

# scale_x_continuous(breaks=c(seq(from = 0.8, to = 1.20, by = 0.1))) +
#geom_text(aes(0.85,80, label="(a) r = 0.34, p = 0.027"),size=4) +
xlab("cumulative substances from bootstrap") +
ylab("mantelR")
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The plot peaks at 10 substances. We now want to do a single mantel test for chemical bray-curtis similarities
based on these 10 compounds and genetic relatedness. As already shown in the plot, the mantelR is 0.164
and is highly significant.

# indices of the 10 best compounds associated with relatedness -----------------
comp_ind_m <- c(36,52,86,88,96,103,110,203,206,207)

# bray curtis similarity matrix based on this 10 compounds
scent_bc <- 1-(as.matrix(vegan::vegdist(as.matrix(scent[factors$age == 1, comp_ind_m])),

method = "bray"))
# relatedness matrix
rel_m <- relatedness[1:41, 1:41]

# mantel test for association between both
vegan::mantel(rel_m, scent_bc, method = "spearman", permutation = 1000, na.rm = TRUE)
#>
#> Mantel statistic based on Spearman's rank correlation rho
#>
#> Call:
#> vegan::mantel(xdis = rel_m, ydis = scent_bc, method = "spearman", permutations = 1000, na.rm = TRUE)
#>
#> Mantel statistic r: 0.164
#> Significance: 0.002997

31



#>
#> Upper quantiles of permutations (null model):
#> 90% 95% 97.5% 99%
#> 0.0706 0.0911 0.1045 0.1260
#> Permutation: free
#> Number of permutations: 1000

R version and platform.

sessionInfo()
#> R version 3.2.1 (2015-06-18)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 8 x64 (build 9200)
#>
#> locale:
#> [1] LC_COLLATE=English_United Kingdom.1252
#> [2] LC_CTYPE=English_United Kingdom.1252
#> [3] LC_MONETARY=English_United Kingdom.1252
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=English_United Kingdom.1252
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] reshape2_1.4.1 magrittr_1.5 dplyr_0.4.2 HDMD_1.2
#> [5] psych_1.5.4 ggplot2_1.0.1 minmodelr_0.1 inbreedR_0.1
#> [9] vegan_2.3-0 permute_0.8-4 MASS_7.3-40 lattice_0.20-31
#> [13] devtools_1.8.0
#>
#> loaded via a namespace (and not attached):
#> [1] Rcpp_0.11.6 formatR_1.2 git2r_0.10.1 plyr_1.8.3
#> [5] tools_3.2.1 digest_0.6.8 evaluate_0.7 memoise_0.2.1
#> [9] nlme_3.1-120 gtable_0.1.2 mgcv_1.8-6 Matrix_1.2-1
#> [13] DBI_0.3.1 curl_0.9 yaml_2.1.13 parallel_3.2.1
#> [17] proto_0.3-10 stringr_1.0.0 xml2_0.1.1 cluster_2.0.1
#> [21] knitr_1.10.5 rversions_1.0.1 ecodist_1.2.9 R6_2.0.1
#> [25] rmarkdown_0.7 codetools_0.2-11 scales_0.2.5 htmltools_0.2.6
#> [29] assertthat_0.1 mnormt_1.5-3 colorspace_1.2-6 labeling_0.3
#> [33] stringi_0.5-2 lazyeval_0.1.10 munsell_0.4.2
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