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Abstract

Although single nucleotide polymorphisms (SNPs) are increasingly being recognized as powerful molecular markers, their
application to non-model organisms can bring significant challenges. Among these are imperfect conversion rates of assays
designed from in silico resources and the enhanced potential for genotyping error relative to pre-validated, highly
optimized human SNPs. To explore these issues, we used Illumina’s GoldenGate assay to genotype 480 Antarctic fur seal
(Arctocephalus gazella) individuals at 144 putative SNPs derived from a 454 transcriptome assembly. One hundred and
thirty-five polymorphic SNPs (93.8%) were automatically validated by the program GenomeStudio, and the initial
genotyping error rate, estimated from nine replicate samples, was 0.004 per reaction. However, an almost tenfold further
reduction in the error rate was achieved by excluding 31 loci (21.5%) that exhibited unclear clustering patterns, manually
editing clusters to allow rescoring of ambiguous or incorrect genotypes, and excluding 18 samples (3.8%) with unreliable
genotypes. After stringent quality filtering, we also found a counter-intuitive negative relationship between in silico minor
allele frequency and the conversion rate, suggesting that some of our assays may have been designed from paralogous loci.
Nevertheless, we obtained over 45 000 individual SNP genotypes with a final error rate of 0.0005, indicating that the Gold-
enGate assay is eminently capable of generating large, high-quality data sets for non-model organisms. This has positive
implications for future studies of the evolutionary, behavioural and conservation genetics of natural populations.
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ing co-dominant inheritance, ease of calibration across

Introduction laboratories and the ability to target SNPs within specific

Single nucleotide polymorphisms (SNPs) are rapidly
becoming the marker of choice for many molecular eco-
logical studies. They are the most abundant source of
genetic variation in most if not all genomes, with around
4 million SNPs having been validated in humans (Sobrino
et al. 2005) and the total number probably exceeding
10 million (Kruglyak & Nickerson 2001). SNPs have a low
enough mutation rate to effectively preclude recurrent
mutations, making them largely bi-allelic (Krawczak
1999). This not only facilitates high-throughput genotyp-
ing, but also makes them analytically highly tractable
(Brumfield et al. 2003). Other desirable properties includ-
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regions of the genome (Morin et al. 2004) suggest that
these markers will become increasingly prominent in evo-
lutionary, behavioural and conservation genetic studies.
Classical approaches to SNP discovery in non-model
organisms include Sanger sequencing random genomic
DNA fragments (Bensch et al. 2002; Primmer et al. 2002;
Seddon et al. 2005) and targeting conserved regions of
orthologous sequences from closely related species to
amplify the intervening introns (Aitken et al. 2004).
However, these approaches typically yield modest num-
bers of markers for a large experimental effort. An alter-
native is to exploit emerging ‘next-generation’
sequencing methods to generate large in silico resources
such as transcriptome assemblies (Vera et al. 2008). From
these it is usually possible to identify many thousands of
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putative SNPs, depending on the depth of sequence cov-
erage obtained, the representation of different transcripts
and the genetic diversity of the study species. Moreover,
SNPs derived from transcribed sequences are associated
with functional genes, allowing direct links to be estab-
lished between functional genetic variation and pheno-
typic traits (Wang et al. 2008; Hemmer-Hansen et al.
2011).

A wide variety of technologies are available for geno-
typing SNPs, the optimal selection of which depends on
numerous factors including sensitivity, accuracy, reliabil-
ity, cost (both overall and per genotype), multiplexing
capacity, throughput, ease of assay development and the
need for specialized equipment (De la Vega et al. 2005;
Sobrino et al. 2005; Syvanen 2005; Ragoussis 2009; Slate
et al. 2009). Small to medium throughput technologies
include Applied Biosystem’s SNPlex and TagMan®
SNP genotyping assays, Sequenom’s iPlex® assay, Beck-
man Coulter's SNPstream® and Illumina’s GoldenGate
assay. The latter is arguably the most flexible in terms of
multiplexing, allowing 48-384 loci to be genotyped in a
single reaction on the BeadXpress platform and 96-1536
loci to be typed on the BeadArray platform. This has
made it popular for Quantitative Trait Locus discovery,
genetic diversity assessment, association mapping and
marker-assisted selection in a variety of commercially
important species (Rostoks et al. 2006; Hyten et al. 2008;
Wang et al. 2008; Akhunov et al. 2009; Yan et al. 2010).

Although these technologies also show great promise
for studying natural populations, SNP genotyping in
non-model organisms is not always straightforward (Lep-
oittevin et al. 2010). One reason for this is that the majority
of SNP genotyping technologies were initially developed
for use in humans, which benefit from the availability of
vast numbers of pre-validated, optimized SNPs (Fan et al.
2003). In contrast, several factors can hinder the develop-
ment of SNPs in species with partially characterized
genomes. For example, sequencing errors can lead to the
identification of false-positive SNPs, particularly when
the depth of sequence coverage and/or the in silico Minor
Allele Frequency (MAF) are low (Wang et al. 2008). More-
over, poor-quality flanking sequences including the
presence of undetected SNPs, repetitive elements or
exon-intron boundaries can also result in assays failing to
convert into scoreable polymorphic SNPs (Wang et al.
2008; Grattapaglia et al. 2011). Finally, in species with
large and complex genomes, there is the additional risk of
interpreting paralogous loci containing fixed differences
as SNPs (Smith et al. 2005; Sanchez et al. 2009). Thus,
while human studies typically report GoldenGate conver-
sion rates above 92% (Montpetit et al. 2006; Garcia-Closas
et al. 2007), equivalent rates for non-model organisms are
almost invariably lower. These range from 12.5% to 40.6%
for SNPs that have not been validated using in vitro

approaches (Wang et al. 2008; Chancerel et al. 2011) to
89.1% for pre-validated markers (Hyten et al. 2008).

Another area for concern relates to the enhanced
potential for genotyping error in custom assays. Moder-
ate rates of error can be tolerated for the assessment of
population structure, but even low rates can have a
strong detrimental effect on parentage analysis (Hoffman
& Amos 2005a;b), the estimation of population size
(Waits & Leberg 2003) and linkage and association stud-
ies (Douglas et al. 2000; Abecasis et al. 2001; Lamina et al.
2010). In theory, far lower error rates should be achiev-
able for SNPs than other markers such as microsatellites
because of their biallelic nature and the increased poten-
tial for automated genotyping and scoring. However,
some authors have argued that error rates could actually
increase ‘as laboratories rush to implement high-through-
put SNP methods’ (Sobel et al. 2002). In practice, the
GoldenGate assay has been reported to be highly accu-
rate in humans, with error rates in the order of 0.3-0.4%
(Oliphant et al. 2002; Fan et al. 2003). However, far more
variable error rates, ranging from zero to around 4% per
reaction, have been reported for non-model organisms
(Akhunov et al. 2009; Lepoittevin et al. 2010; Yan et al.
2010; Chancerel et al. 2011; Grattapaglia et al. 2011) and
the exact causes of this variation are unclear.

An ideal opportunity for exploring the prevalence and
causes of GoldenGate genotyping error in a non-model
species is provided by the Antarctic fur seal (Arctocephalus
gazella). On Bird Island, South Georgia, a breeding colony
of this species has been studied since the 1970s, with an
aerial walkway providing unprecedented ease of access
for tissue sampling and the collection of detailed behavio-
ural observations, which started in 1994. Genetic analysis
using nine hypervariable microsatellite loci has shown
that most if not all pups are conceived ashore (Hoffman
et al. 2003) and hence that lifetime reproductive profiles
can be constructed for virtually every territory-holding
male. Heterozygosity at the same panel of markers has
also been shown to correlate with virtually every fitness
trait measured to date, from male reproductive success
through body size to attractiveness to females (Hoffman
et al. 2004, 2007, 2010a). However, because the markers
used are both anonymous and few in number, the mecha-
nisms underlying these associations remain unclear
(Hoffman et al. 2010b). To circumvent this problem, a
transcriptome assembly was recently generated (Hoffman
2011) from which we have begun to develop functionally
annotated genetic markers (Hoffman & Nichols 2011).

The aim of this study was to develop a high-quality,
genome-wide distributed panel of SNPs for the Antarctic
fur seal using the GoldenGate assay. A total of 144 puta-
tive SNPs identified from the transcriptome assembly
were genotyped in 480 individuals. Replicate individuals
were included, allowing us to quantify genotyping error
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rates and to evaluate the efficacy of three main
approaches for driving down the genotyping error rate
for the resulting data set. After having stringently filtered
out unreliable genotypes, we also explored relationships
between several relevant parameters and assay conver-
sion success.

Materials and methods

Tissue sampling and DNA extraction

Skin biopsy samples were collected from 440 fur seal
individuals at a designated study colony on Bird Island,
South Georgia (54° 00" S, 38° 02" W) during the austral
summers of 2000/2001-2008/2009. Sampling procedures
are described in detail by Hoffman et al. (2003). Skin sam-
ples were transferred to Dimethyl Sulphoxide saturated
with salt and stored individually at —20 °C. Total geno-
mic DNA was extracted using an adapted Chelex 100
protocol (Walsh et al. 1991) followed by phenol-chloro-
form purification (Sambrook et al. 1989). Each sample
was then quantified using PicoGreen (Invitrogen) fluo-
rometry. DNA concentrations averaged 96.8 ng/uL and
ranged from 3.4 to 243.1 ng/pL.

Transcriptome assembly and SNP discovery

A fur seal transcriptome assembly was previously gener-
ated using protocols described by Hoffman (2011).
Briefly, a normalized cDNA library derived from skin
samples collected from twelve individuals was sequenced
on a Roche GS-FLX Titanium DNA sequencer (Roche
Diagnostic). A total of 1 443 397 reads with a mean length
of 286 bp were generated. These were assembled de novo
using Roche Newbler assembler version 2.3 into 23 025
isotigs, which in turn clustered into 18 576 isogroups (dif-
ferent isotigs from a given isogroup can be inferred as
alternative splice-variants). The mean isotig length was
854 bp and the average depth of coverage was 19.4x. Basic
Local Alignment Search Tool (BLASTX) sequence similarity
searches to the non-redundant (nr) database with an
e-value threshold of le™ produced matches for 10 825
isotig sequences (47.0%), with 76.9% of the top matches
being to mammals and these most frequently comprising
the dog. Restricting the BLAST search set to canine
sequences, the majority of isotigs (n = 22 541, 97.9%) were
also mapped to unique locations within the dog genome.
A final set of BLAST searches against a subset of sequences
with known Gene Ontology (GO) annotations recovered a
total of 111 446 annotation terms.

Single nucleotide polymorphism detection was con-
ducted using the Swap454 pipeline (Brockman et al.
2008) which incorporates a phred-based quality score into
the SNP-calling algorithm to reduce the false-positive
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rate. The phred score is an estimate of the probability that
the corresponding base-call is correct, based on the image
intensities recorded during sequencing. The Swap454
program first maps the raw sequence reads back to the
assembled isotigs, ignoring alignments having <80%
identity. It then scores these alignments by adding indels
plus mismatches and declares a read ambiguous if the
score for its best alignment exceeds a one-fourth of the
score of the second-best. We specified an 11-base Neigh-
bourhood Quality Standard (NQS) of 20/15 (i.e. for the
parameter ‘MIN_QUAL’, we specified at least quality
20" at the central base and a window of five bases on
each side with a neighbourhood quality ‘NQ’ of at least
“15). No more than two mismatches and zero indels were
allowed in this window. Using only these mapped reads,
and taking into account an error model for the 454 data,
Swap454 then determines which positions are called as
SNPs according to two user-specified thresholds. The first
of these thresholds, ‘MIN_RATIO" corresponds to the
fraction of reads that differ from the reference sequence at
a given position and the second, ‘MIN_READS’ to the
number of copies present of the minor allele. To minimize
the possibility of false positives arising from sequencing
error, we applied stringent SNP discovery criteria, setting
MIN_RATIO to 0.1 (meaning at least 10% of the reads at
this position must differ from the reference sequence to
call a SNP) and MIN_READS to 6. The parameter
‘NEED_RC’ was set to “True’ meaning that reads need to
be seen aligned in both directions to call a SNP. This
identified a total of 1599 putative SNPs located within
1004 different isotigs. These were then further filtered
using a relational database to include only those that were
functionally annotated with respect to the nr database
and which mapped to known locations in the dog
genome. This reduced the total number of putative SNPs
to 1101, which were located within 613 different isotigs.

Single nucleotide polymorphism selection and Golden-
Gate assay design

Individual SNPs were selected to provide the best possi-
ble balance between two main criteria: genomic distribu-
tion and quality. To achieve our primary aim of
developing a genome-wide panel of SNPs in the Antarc-
tic fur seal, we selected SNPs distributed evenly across
chromosomes, as inferred using BLASTN to map our
isotigs to the closest matching sequences within the dog
(Canis familaris) genome. Additionally, we also evaluated
a subset of SNPs located within candidate genes relating
to immunity and growth (Hoffman & Nichols 2011). This
involved filtering all of the SNP-containing isotigs for a
subset with GO annotation terms containing the strings
‘immune’ or ‘growth’, which recovered 41 and 107 SNPs
respectively. The most promising of these, which met the
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additional criteria outlined below, were selected for
further development. These comprised seven immune-
related and twelve growth-related SNPs (See Table S1,
Supporting information for details). The former included
two SNPs residing within isotigs revealing sequence sim-
ilarity to Major Histocompatibility Complex (MHC) class
II genes.

Our second major criterion was SNP quality. To maxi-
mize the likelihood of SNPs successfully converting into
polymorphic assays, the following steps were taken: (i)
we selected only SNPs with at least 60 bases of flanking
sequence on either side to allow the design of allele and
locus-specific oligonucleotides; (ii) because the presence
of additional SNPs within the flanking sequences can
have a strong detrimental effect on assay performance
(Wang et al. 2008), we visually inspected all of the
sequences within the alignment viewing program Tablet
v1 (Milne et al. 2010) and discarded loci showing evidence
of flanking SNPs; (iii) isotigs carrying high SNP densities
were also avoided because of the possibility of these
having been assembled from paralogous loci (Sanchez
et al. 2009); and (iv) as a final guard against false-positive
SNPs and to maximize the informativeness of our panel,
we also opted not to develop assays for SNPs with i silico
Minor Allele Frequencies (MAFs) below 10%.

We initially submitted sequences for 200 putative
SNPs to Illumina for processing by the Assay Design
Tool (ADT). This software generates a score for each SNP
that takes into account the sequence conformation
around the SNP, the presence of repetitive elements and,
in the case of model organisms, sequence redundancy
against the available database. The resulting score varies
between 0 and 1, with values of 0.6 or above indicating
a high probability of conversion into a successful geno-
typing assay. ADT scores for the 200 SNPs ranged from
0.35 to 1 and averaged 0.86. Sequences that gave scores
below 0.6 were discarded, and a subset of 144 SNPs that
met the above criteria was subsequently selected to
populate the custom Oligo Pool Array (OPA). The ADT
scores for these SNPs ranged from 0.78 to 1 with a mean
of 0.92 (see Table S1, Supporting information for details).

Single nucleotide polymorphism genotyping

Highly multiplexed SNP genotyping was conducted
using Veracode GoldenGate genotyping on a BeadXpress
Reader at the Sheffield University Molecular Ecology
Laboratory following the manufacturer’s protocols.
Genotyping was carried out using 5 pL of each DNA
sample normalized to a concentration of < 50 ng/uL. The
template was first subjected to oligonucleotide hybridiza-
tion involving two allele-specific primers and one
locus-specific primer for each of the 144 loci (the OPA
comprised a total of 432 custom oligonucleotides).

Allele-specific primers were then extended across the
SNP site and ligated to the locus-specific primer to create
a polymerase chain reaction (PCR) template. This step
was followed by universal PCR for all 144 loci using com-
plementary primers, with the allele-specific oligonucleo-
tides being labelled with either Cy3 or Cyb5 to distinguish
each of the alleles. The fluorescent products were then
hybridized onto Sentrix Array Matrices (SAMs) contain-
ing beads coated with oligonucleotides complementary
to address sequences within each of the locus-specific
primers. Finally, the bead array signal was read using an
Illumina Beadstation 500 GX (Illumina, San Diego, SA).
Homozygous genotypes are expected to return predomi-
nantly Cy3 or Cyb signals, whereas heterozygotes display
a signal of roughly equal strength in both channels.

Automated allele calling was implemented using the
software GenomeStudio 2010.1 (Genotyping module
1.7.4; Nllumina). This program normalized the intensity
data for each of the loci and then assigned each sample a
cluster position. The resulting genotype output was then
produced with two quality measures, the GenTrain and
GenCall scores (Fan et al. 2003). The GenTrain score pro-
vides a locus-specific measure that takes into account the
quality and shape of the genotype clusters and their rela-
tive distances from one another. The GenCall score, esti-
mated for each individual at each SNP, allows
individuals or loci to be ranked. Genotypes with lower
GenCall scores are located further away from the centre
of clusters and are therefore considered less reliable. We
only accepted loci with a GenTrain score 20.25 and only
called individual genotypes with GenCall scores >0.25.
These scores represent stringent thresholds previously
applied in studies of humans (Fan et al. 2003) and other
species (Namroud ef al. 2008; Sanchez et al. 2009; Lep-
oittevin et al. 2010). After calling the data automatically
(datasetl), we then checked each of the loci manually
within GenomeStudio and excluded from further analy-
sis any SNPs that did not show clear patterns of cluster
separation (see Fig. 1c,d for examples). This process
yielded data set 2. Following Yan et al. (2010), we then
generated a third data set in which minor manual adjust-
ments were made to the clustering to allow the re-scoring
of any genotypes that we believed to be either ambiguous
or incorrect. Finally we removed any samples from the
analysis that had call rates <0.9, as we suspected these
samples may be prone to error at those loci for which
they were called (data set 4).

Estimation of genotyping error rates and multilocus
heterozygosity

Nine individuals were genotyped in duplicate following
Hoffman & Amos (2005b) to estimate overall reproduc-
ibility. The error rate per reaction was calculated as the

© 2012 Blackwell Publishing Ltd
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Fig. 1 Examples of clustering results obtained for the Antarctic fur seal single nucleotide polymorphism (SNP) array. Each point repre-
sents the mean normalized intensity derived from a population of beads for a single sample. ‘Norm R’ (y-axis) is the normalized sum of
the intensities of the two channels (Cy3 and Cy5). ‘Norm Theta’ (x-axis) is ((2/m)Tan™" (Cy5/Cy3)) where a value near 0 represents a
homozygote for allele A (denoted by red points) and a value near 1 represents a homozygote for allele B (denoted by blue points). Het-
erozygotes fall approximately mid-way between these values and are denoted by purple points. Samples not scored at a given locus due
to their not having passed the GenCall threshold of 0.25 are denoted by black points. The numbers of samples called by GenomeStudio
for each of the three possible genotypes are shown below the x-axis (thirteen failed samples were removed from the data set leaving a
total of 467). (a) Classical three-cluster pattern for a SNP considered successful and polymorphic; (b) A second polymorphic SNP show-
ing greater scatter; (c) A locus showing ‘cluster compression’, in which the clusters cannot be clearly distinguished because of their being
closer to one another than expected; (d) A locus showing ambiguous clustering. We classified c and d as genotyping failures.

number of genotypes that differed divided by the total
number of comparisons made (Bonin et al. 2004). We also
calculated multilocus standardized heterozygosity (SH)
for each individual using the program Rhh (Alho et al.
2010).

Data analyses

Genepop (Raymond & Rousset 1995) was used to calcu-
late observed and expected heterozygosities for each of
the loci and to test for deviations from Hardy-Weinberg
equilibrium and for linkage disequilibrium among pairs
of loci. To explore factors potentially influencing whether
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or not a given assay successfully converted into a high-
quality polymorphic SNP, we constructed a Generalized
Linear Model (GLM) within R (R Development Team
2005). Conversion was modelled as a binary response
variable (coded as 0 = failed and 1 = successful) using a
binomial error structure. The following predictor vari-
ables were fitted: class of SNP (as a factor with transi-
tion = 0, transversion = 1), depth of sequence coverage at
the SNP (accepted reads only), MAF (accepted reads
only) and ADT score plus all second-order interactions.
Using standard deletion-testing procedures (Crawley
2002), each term was then progressively dropped from
models unless doing so significantly reduced the amount
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of deviance explained. The change in deviance between
full and reduced models was distributed as chi-square
with degrees of freedom equal to the difference in
degrees of freedom between the models with and
without the term in question. For all models, distribu-
tions of standardized residuals about regressions were
inspected to verify that they were approximately
normally distributed.

Results

Automated single nucleotide polymorphism calling
(dataset 1)

Fully automated analysis within GenomeStudio using a
GenTrain threshold of 0.25 resulted in all 144 putative
SNPs being validated. Most of the loci showed clear clus-
tering patterns (see Fig. 1, panels a and b for examples)
and received correspondingly high GenTrain scores
(mean = 0.72). Nine loci were monomorphic in all of the
samples tested and were excluded from further analysis,
leaving 135 (93.8%) polymorphic SNPs. Applying a Gen-
Call threshold of 0.25 to the scoring of individual geno-
types, 13 individuals (2.7%) failed to generate data at any
of the 144 loci. After excluding these individuals from the
data set, the call rate averaged over all individuals and
loci was 94.6%. The genotyping error rate, estimated by
repeat-genotyping nine individuals, was estimated at
0.0040 per reaction (nine genotypes were called differ-
ently out of 2255 reactions compared).

Removal of poor-quality loci (dataset 2)

We next used GenomeStudio to visually inspect the clus-
tering results obtained for each of the 135 polymorphic
assays. A further 31 loci were found to exhibit unclear
clustering patterns, either because of poor cluster separa-
tion (n = 19, Fig. 1c) or because of a combination of poor
clustering and highly variable signal intensity (n =12,
Fig. 1d). We considered these assays to be genotyping
failures despite their having passed the GenTrain thresh-
old. Retaining only clear, polymorphic SNPs (n = 104,
72.2%), the average GenTrain score increased to 0.77 and
the call rate increased to 99.4%. The genotyping error rate
for the reduced data set was estimated at 0.0016 (three
genotypes were called differently out of 1867 reactions
compared).

Manually adjusted clustering (data set 3)

We next revisited the data set of 104 high-quality loci and
visually inspected the automated scoring of each individ-
ual within GenomeStudio. Manual adjustments were
made to the clustering to allow the program to exclude

any ambiguous genotypes and to rescore any genotypes
that we believed to be incorrect. This resulted in one of
the SNPs no longer being scored as polymorphic, leaving
a total of 103 variable loci remaining. The resulting data
set had a marginally lower call rate than before (98.8%)
but the average GenTrain score increased to 0.80 indicat-
ing an improved fit of the manually adjusted clusters to
the data. The genotyping error rate was also further
reduced to 0.0005 (1 genotype was scored differently out
of 1839 reactions compared).

Removal of poor-quality samples (data set 4)

It is common practice when using microsatellites to dis-
card the multilocus genotypes of any individuals that fail
to generate interpretable PCR products at or above a
given number of loci. Although the exact threshold is
often arbitrarily defined, this approach makes good sense
because poor-quality samples tend not only to have
higher genotyping failure rates but also to suffer from
allelic dropout, which can produce ‘false homozygotes’
(Taberlet et al. 1999). To explore whether a similar bias
could exist within our SNP data set, we pooled data from
all 103 SNPs and calculated SH for each of the individu-
als. Comparing this with the number of SNPs scored, a
highly significant correlation was obtained (Fig. 2,
xz =99.66, d.f. =1, P <0.0001), although contrary to
expectations, the direction of the trend was negative. By
implication, samples excluded from being scored at mul-
tiple loci may show a bias towards being preferentially
assigned to heterozygous clusters at the remaining loci.

2.0 1

0.5 T T T T T T
73 80 a5 80 95 100

Number of SNPs scored

Fig. 2 Relationship between the number of single nucleotide
polymorphisms scored and individual multilocus standardized
heterozygosity. Grey circles depict samples that failed to score at
10% or more of loci. The solid line represents the regression fit-
ted to the entire data set (y = —0.0171x + 2.742, 7 = 0.175), while
the broken line represents the regression after excluding the grey
data points (y = —0.007x + 1.744, r* = 0.002).
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Fortunately, the trend became no longer significant after
we excluded 18 samples that failed to score at 10% or
more of the loci ()(2 =3.67, d.f. =1, P > 0.05), although
this also resulted in an additional locus being discarded
as monomorphic, leaving a total of 102 polymorphic
SNPs. The call rate increased to 99.5% but the overall
genotyping error rate was not further affected.

Descriptive statistics

Using the final, stringently filtered data set, we tested for
conformity to Hardy-Weinberg equilibrium (HWE) and
calculated a variety of summary statistics (see Table S2,
Supporting information for details). Three of the SNPs
were found to deviate significantly from HWE at
P < 0.05, although only one (Ag_SNP_1) remained signif-
icant following table-wide correction for the false discov-
ery rate (Benjamini & Hochberg 1995) implemented
within the program Q-value (Storey & Tibshirani 2003).
At this locus, all of the individuals were called as homo-
zygotes but for different alleles, a pattern attributable to
our having inadvertently developed this marker within
the mitochondrial NADH dehydrogenase gene. Tests for
linkage disequilibrium (LD) among the remaining 101
polymorphic SNPs yielded only nine P-values that were
robust to table-wide false discovery rate correction, con-
sistent with the broad inferred genomic distribution of
the marker panel (Fig. 3, Tables S1 and S2, Supporting
information). However, in five of nine instances where
significant LD was inferred, both loci mapped to adjacent
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positions on the same chromosome in the dog
(Ag SNP_10 and Ag SNP_11 both mapped to chromo-
some 1, Ag SNP_6 and Ag SNP_103 to chromosome 10,
Ag SNP _34 and Ag SNP_43 to chromosome 36, Ag_
SNP_61 and Ag SNP_103 to chromosome 10, and
Ag SNP 58 and Ag SNP_138 to chromosome 24) consis-
tent with their being physically linked.

Candidate gene markers

There is a growing interest in developing genetic markers
targeted towards specific classes of functionally relevant
gene (i.e. ‘candidate genes’). Consequently, we explored
the feasibility of developing SNPs within a subset of 19
isotigs with functional annotations relating to immunity
and growth (see Materials and methods for details).
Thirteen of these converted into high-quality polymor-
phic SNPs, giving a success rate that did not differ signifi-
cantly from that of non-candidate SNPs (13/19 versus
89/125, binomial proportions test, P > 0.05). Moreover,
all but one of the immune-related SNPs (85.7%) success-
fully converted, including two located within isotigs
revealing homology to MHC class II genes.

Assay conversion rates

Finally, to explore factors influencing the propensity of
GoldenGate assays to successfully convert into clearly
interpretable polymorphic SNPs, we constructed a GLM
(see Materials and Methods for details). Only in silico
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MAF was found to explain significant deviance in con-
version success (x2 =7.32,d.f. =1, P = 0.007). Unexpect-
edly, the slope of the relationship was negative, implying
that SNPs with low to intermediate in silico MAFs were
more likely to convert into successful assays than those
with MAFs approaching 0.5.

Discussion

Although SNPs are rapidly emerging as a marker of
choice for many population genetic applications, they
have not yet been widely applied to natural populations
of non-model organisms. Consequently, examining the
efficacy of assay design and measuring and reducing the
genotyping error rate remain important challenges, par-
ticularly given that many SNP genotyping technologies
were initially developed for use in humans. Here, we
successfully developed a genome-wide panel of SNPs for
a marine mammal, the Antarctic fur seal, while also
exploring several approaches for reducing the genotyp-
ing error rate. We demonstrate highly repeatable SNP-
calling after a combination of removing poor-quality loci,
manually editing clusters within GenomeStudio and
excluding unreliable samples.

Single nucleotide polymorphism genotyping errors

Theoretically, enhanced automation of genotyping and
scoring should allow SNP genotyping error rates to be
driven far lower than is achievable for microsatellites. In
practice, however, highly variable GoldenGate genotyp-
ing error rates have been reported for non-model organ-
isms, ranging from zero to around 4% per reaction
(Akhunov et al. 2009; Lepoittevin et al. 2010; Yan et al.
2010; Chancerel et al. 2011; Grattapaglia et al. 2011). Our
initial error rate of 0.4% per reaction falls towards the
lower end of this range, but we were nevertheless able
to identify several sources of error that could have a
bearing on why rates vary so greatly from system to
system.

The first main source of error we identified in our SNP
data set was locus-specific. Upon visual inspection, over
20% of loci (n = 31) validated by GenomeStudio were
found to exhibit unclear clustering patterns, either due to
poor cluster separation or variable to low signal intensi-
ties. Removal of these loci resulted in a 2.5-fold reduction
in the genotyping error rate, consistent with a previous
study reporting a ninefold reduction after omitting just
four out of 188 SNPs with the highest error rates (Lep-
oittevin et al. 2010). An alternative to identifying poor-
quality loci by eye is to apply stringent ad hoc reliability
thresholds. For example, Grattapaglia et al. (2011) only
scored SNPs with median GenCall scores greater than or
equal to 0.4 and with a call rate of 95% or above. How-

ever, without visual inspection and depending on the
exact thresholds applied, this approach risks discarding
data of adequate quality.

The second source of error we observed relates to the
automated scoring of genotypes within GenomeStudio.
Following the approach of Yan et al. (2010), we made
minor manual adjustments to the clustering of each locus
to allow the program to re-score any genotypes that were
either ambiguous or likely to be incorrect. However, in
contrast to Yan ef al. (2010) who did not directly quantify
the effect of their adjustments on the quality of the result-
ing data, we were able to demonstrate a greater than
3-fold reduction in the genotyping error rate, even after
having previously filtered poor-quality loci from the data
set. Thus, although manual cluster adjustment is clearly
undesirable for large-scale projects (Yan et al. 2010), it
may prove a valuable way of minimizing errors in small-
to medium-scale studies.

A third source of error documented in this study was
sample-specific, with a highly significant negative corre-
lation being found between SH and the number of SNPs
scored. This indicates a tendency for samples that per-
form poorly in the assay to be preferentially assigned to
heterozygous rather than homozygous clusters and is
probably related to the fact that heterozygous clusters are
usually more scattered on the x-axis (i.e. they have a lar-
ger variance in normalized theta) than homozygous ones
(see Fig. 1a,b for examples). Fortunately, the relationship
became no longer significant after removing a small num-
ber of samples that failed to score at 10% or more of loci,
suggesting a relatively straightforward means of mitigat-
ing the problem. Nevertheless, the effect on individual
samples was in some cases extreme, with two samples in
particular yielding SH values over twice that of the mean
SH of the full data set (2.11 and 2.06 vs. 1.00) and well
outside the interquartile range (0.89-1.09). If overlooked,
this could have led to erroneous conclusions being drawn
about the distribution of individual heterozygosity in the
population, particularly if the inclusion of unreliable
genotypes were to generate an artefactual correlation in
heterozygosity among loci that could be interpreted as
evidence for inbreeding depression (Balloux et al. 2004).

An alternative to filtering samples on the basis of the
proportion of SNPs scored would be to use another qual-
ity criterion, such as p50GC, the 50th percentile (or mode)
of the distribution of the GenCall scores for a given indi-
vidual. Genotypes with lower average GenCall scores
tend to be located further away from the centre of clus-
ters and are therefore considered to be less reliable. How-
ever, GenCall scores provide an imperfect measure of
cluster separation because they are based on the degree
to which the two homozygote clusters are separated from
the heterozygote cluster rather than the degree of separa-
tion of the two homozygote clusters (Hyten et al. 2008).
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Moreover, because heterozygous clusters tend to be more
diffuse than homozygous clusters per se, individuals who
are heterozygous for many loci will also tend to have
higher average GenCall values. This leads to the predic-
tion that SH and p50GC could, under certain circum-
stances, be negatively correlated even in the absence of
genotyping error.

Assay conversion rates

Even after having stringently filtered our data set, result-
ing in a substantial proportion of loci being discarded as
either low quality or monomorphic, our rate of conver-
sion into polymorphic SNPs still compares favourably
with similar studies based exclusively on in silico
resources (e.g. 12.5-19.5% in Maritime pine (Chancerel
et al. 2011) and 40.6% in Catfish (Wang et al. 2008)). There
are several potential reasons for this. Most obviously,
sequencing errors can lead to the identification of false-
positive SNPs, especially where sequence coverage is low
(Wang et al. 2008). However, we guarded against this by
applying stringent SNP-calling thresholds. For example,
our requirement of a minimum 6x depth of coverage of
the minor allele led to assays being designed for isotigs
with an average of 57x total coverage (range = 12-433x),
substantially higher than reported for most previous
studies.

A second factor known to impact rates of assay con-
version is flanking sequence quality, including the possi-
ble presence of additional SNPs or intron-exon
boundaries close to the targeted marker (Wang ef al.
2008; Grattapaglia et al. 2011). Although the latter is diffi-
cult to guard against in the absence of a reference gen-
ome, we conducted a thorough in silico inspection of each
SNP and its flanking regions, allowing us to discard any
loci that were closely flanked by other polymorphisms,
areas of low sequence coverage or homopolymer tracts.
We were also careful to select assays with ADT scores
well in excess of Illumina’s recommended threshold of
0.6 (see Materials and methods).

Another potential pitfall relates to the assembly of par-
alogous sequences, which can lead to the identification of
false-positive SNPs (Smith et al. 2005; Sanchez et al. 2009).
This can be particularly problematic for species that have
undergone recent genome duplications, such as many
commercial crop species and some vertebrates including
salmonids. Usually, assays targeted towards these
regions will tend either to result in no signal (Smith et al.
2005; Sanchez et al. 2009) or to report all samples as being
heterozygous (Hosking et al. 2004; Sanchez et al. 2009).
However, cases of ‘cluster compression’, where the two
homozygous clusters are shifted together, have also been
reported for SNPs residing within near-identical para-
logues in species with highly duplicated genomes (Hyten
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et al. 2008; Yan et al. 2010). Moreover, it has also been cau-
tioned that it may prove difficult generally to distinguish
between true heterozygote clusters and those resulting
from targeted sequence redundancy (Yan et al. 2010),
although the latter should in many instances lead to vio-
lation of HWE (Lee et al. 2008). Fortunately, pinnipeds do
not have particularly large or complex genomes (Du &
Wang 2006) and our use of Swap454 may also partially
compensate for this problem because the program only
calls SNPs on the basis of reads that assemble reliably to a
single isotig (Brockman et al. 2008). However, we took the
additional precaution of avoiding designing SNPs within
isotigs carrying qualitatively high SNP densities, as these
are more likely to originate from paralagous loci (Sanchez
et al. 2009). This appears to have been largely successful,
because only six of our failed assays exhibited clustering
patterns indicative of cluster compression (for an exam-
ple, see Fig. 1c). Moreover, only a single SNP was found
to deviate significantly from HWE after correction for the
false discovery rate, and this was because of the locus in
question having inadvertently been designed within a
mitochondrial gene.

To test whether additional factors might also have
contributed to assay success or failure, we constructed a
GLM. In contrast to several previous studies (Wang et al.
2008; Lepoittevin ef al. 2010; Chancerel et al. 2011), we
found no effect of the type of SNP (transition vs. transver-
sion), depth of sequence coverage or Illumina’s quality
score, the latter combining information about flanking
sequence complexity and context. One reason for this
could be that our relatively small sample size of loci,
combined with an above-average conversion rate, gave
us little power to dissect apart the underlying causes of
assay failure. Alternatively, many of these variables
might not have come into play because of our stringent in
silico filtering criteria. For example, we only evaluated
assays with ADT scores above the arbitrary threshold of
0.6. In contrast, Lepoittevin et al. (2010) reported a signifi-
cant effect of ADT score, but this was driven primarily by
poorly converting assays with ADT scores in the range
0.4-0.6. We nevertheless detected a significant effect of in
silico MAF on the conversion rate, although contrary to
our initial expectations, the slope of the relationship was
negative. The exact reasons for this are unclear, although
if paralogous loci were sequenced at roughly equal
depth, any fixed differences residing within them should
be manifest as false-positive SNPs with in silico MAFs
close to 0.5.

Owerall performance of the assay in Antarctic fur seals

Our findings also add to a growing body of evidence sug-
gesting that, despite imperfect conversion rates, Golden-
Gate genotyping can perform remarkably well for SNPs
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derived in silico from non-model organisms. Thus, even
after excluding poor-quality loci and samples, we
obtained over 45 000 high-quality individual SNP geno-
types at the cost of <€10 000 and 2 weeks spent in the lab-
oratory. This compares favourably with a similar sized
Antarctic fur seal microsatellite data set (5000 individuals
genotyped at 9-76 loci) that has taken over a decade to
amass using manual techniques (J. Hoffman, unpub-
lished data). Moreover, our final SNP genotyping error
rate (0.0005 per reaction) is roughly an order of magni-
tude lower than that previously estimated for our micro-
satellite data set (Hoffman & Amos 2005b). Finally, our
attempts at targeting SNPs within candidate genes were
surprisingly successful, 13 of 19 assays converting into
polymorphic SNPs, including two residing within MHC
class II like-genes.

Conclusion

We have demonstrated the feasibility of developing and
genotyping a panel of genome-wide distributed SNPs in
a marine mammal species. Our approach, based on the
development of GoldenGate assays from a skin transcrip-
tome, should be particularly useful for marine mammal
taxa as well as other species that can only be remotely
biopsy sampled.
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Table S1 Details of 144 GoldenGate SNP assays developed from
the Antarctic fur seal transcriptome assembly (see Materials and
methods for details). ‘Chromosome in the dog’ refers to the
genomic location inferred by mapping each isotig to the dog
(Canis familaris) genome. Basic Local Alignment Search Tool
(BLAST) results indicate the top match of each isotig to the non-
redundant (nr) database. Gene Ontology codes are given only
for isotigs that recovered functional annotations relating to
growth or immunity. In silico Minor Allele Frequency and depth
of coverage refer to the exact site of each SNP and are given only
for reads accepted as unambiguous by the program Swap454
(Brockman et al. 2008). Assay Design Tool scores vary between 0
and 1, with values of 0.6 or above indicating a high probability
of conversion into a successful genotyping assay.

Table S2 Polymorphism characteristics of 102 polymorphic SNP
assays in 440 Antarctic fur seals individuals (see Materials and
methods for details). The GenTrain score takes into account the
quality, shape and degree of separation of the genotype clusters,
with higher values indicating improved clustering (Fan et al.
2003).
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