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Abstract

Although single nucleotide polymorphisms (SNPs) are increasingly being recognized as powerful molecular markers, their

application to non-model organisms can bring significant challenges. Among these are imperfect conversion rates of assays

designed from in silico resources and the enhanced potential for genotyping error relative to pre-validated, highly

optimized human SNPs. To explore these issues, we used Illumina’s GoldenGate assay to genotype 480 Antarctic fur seal

(Arctocephalus gazella) individuals at 144 putative SNPs derived from a 454 transcriptome assembly. One hundred and

thirty-five polymorphic SNPs (93.8%) were automatically validated by the program GenomeStudio, and the initial

genotyping error rate, estimated from nine replicate samples, was 0.004 per reaction. However, an almost tenfold further

reduction in the error rate was achieved by excluding 31 loci (21.5%) that exhibited unclear clustering patterns, manually

editing clusters to allow rescoring of ambiguous or incorrect genotypes, and excluding 18 samples (3.8%) with unreliable

genotypes. After stringent quality filtering, we also found a counter-intuitive negative relationship between in silico minor

allele frequency and the conversion rate, suggesting that some of our assays may have been designed from paralogous loci.

Nevertheless, we obtained over 45 000 individual SNP genotypes with a final error rate of 0.0005, indicating that the Gold-

enGate assay is eminently capable of generating large, high-quality data sets for non-model organisms. This has positive

implications for future studies of the evolutionary, behavioural and conservation genetics of natural populations.
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Introduction

Single nucleotide polymorphisms (SNPs) are rapidly

becoming the marker of choice for many molecular eco-

logical studies. They are the most abundant source of

genetic variation in most if not all genomes, with around

4 million SNPs having been validated in humans (Sobrino

et al. 2005) and the total number probably exceeding

10 million (Kruglyak & Nickerson 2001). SNPs have a low

enough mutation rate to effectively preclude recurrent

mutations, making them largely bi-allelic (Krawczak

1999). This not only facilitates high-throughput genotyp-

ing, but also makes them analytically highly tractable

(Brumfield et al. 2003). Other desirable properties includ-

ing co-dominant inheritance, ease of calibration across

laboratories and the ability to target SNPs within specific

regions of the genome (Morin et al. 2004) suggest that

these markers will become increasingly prominent in evo-

lutionary, behavioural and conservation genetic studies.

Classical approaches to SNP discovery in non-model

organisms include Sanger sequencing random genomic

DNA fragments (Bensch et al. 2002; Primmer et al. 2002;

Seddon et al. 2005) and targeting conserved regions of

orthologous sequences from closely related species to

amplify the intervening introns (Aitken et al. 2004).

However, these approaches typically yield modest num-

bers of markers for a large experimental effort. An alter-

native is to exploit emerging ‘next-generation’

sequencing methods to generate large in silico resources

such as transcriptome assemblies (Vera et al. 2008). From

these it is usually possible to identify many thousands of
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putative SNPs, depending on the depth of sequence cov-

erage obtained, the representation of different transcripts

and the genetic diversity of the study species. Moreover,

SNPs derived from transcribed sequences are associated

with functional genes, allowing direct links to be estab-

lished between functional genetic variation and pheno-

typic traits (Wang et al. 2008; Hemmer-Hansen et al.

2011).

A wide variety of technologies are available for geno-

typing SNPs, the optimal selection of which depends on

numerous factors including sensitivity, accuracy, reliabil-

ity, cost (both overall and per genotype), multiplexing

capacity, throughput, ease of assay development and the

need for specialized equipment (De la Vega et al. 2005;

Sobrino et al. 2005; Syvanen 2005; Ragoussis 2009; Slate

et al. 2009). Small to medium throughput technologies

include Applied Biosystem’s SNPlex� and TaqMan�

SNP genotyping assays, Sequenom’s iPlex� assay, Beck-

man Coulter’s SNPstream� and Illumina’s GoldenGate

assay. The latter is arguably the most flexible in terms of

multiplexing, allowing 48–384 loci to be genotyped in a

single reaction on the BeadXpress platform and 96–1536

loci to be typed on the BeadArray platform. This has

made it popular for Quantitative Trait Locus discovery,

genetic diversity assessment, association mapping and

marker-assisted selection in a variety of commercially

important species (Rostoks et al. 2006; Hyten et al. 2008;

Wang et al. 2008; Akhunov et al. 2009; Yan et al. 2010).

Although these technologies also show great promise

for studying natural populations, SNP genotyping in

non-model organisms is not always straightforward (Lep-

oittevin et al. 2010). One reason for this is that the majority

of SNP genotyping technologies were initially developed

for use in humans, which benefit from the availability of

vast numbers of pre-validated, optimized SNPs (Fan et al.

2003). In contrast, several factors can hinder the develop-

ment of SNPs in species with partially characterized

genomes. For example, sequencing errors can lead to the

identification of false-positive SNPs, particularly when

the depth of sequence coverage and ⁄ or the in silico Minor

Allele Frequency (MAF) are low (Wang et al. 2008). More-

over, poor-quality flanking sequences including the

presence of undetected SNPs, repetitive elements or

exon-intron boundaries can also result in assays failing to

convert into scoreable polymorphic SNPs (Wang et al.

2008; Grattapaglia et al. 2011). Finally, in species with

large and complex genomes, there is the additional risk of

interpreting paralogous loci containing fixed differences

as SNPs (Smith et al. 2005; Sanchez et al. 2009). Thus,

while human studies typically report GoldenGate conver-

sion rates above 92% (Montpetit et al. 2006; Garcia-Closas

et al. 2007), equivalent rates for non-model organisms are

almost invariably lower. These range from 12.5% to 40.6%

for SNPs that have not been validated using in vitro

approaches (Wang et al. 2008; Chancerel et al. 2011) to

89.1% for pre-validated markers (Hyten et al. 2008).

Another area for concern relates to the enhanced

potential for genotyping error in custom assays. Moder-

ate rates of error can be tolerated for the assessment of

population structure, but even low rates can have a

strong detrimental effect on parentage analysis (Hoffman

& Amos 2005a;b), the estimation of population size

(Waits & Leberg 2003) and linkage and association stud-

ies (Douglas et al. 2000; Abecasis et al. 2001; Lamina et al.

2010). In theory, far lower error rates should be achiev-

able for SNPs than other markers such as microsatellites

because of their biallelic nature and the increased poten-

tial for automated genotyping and scoring. However,

some authors have argued that error rates could actually

increase ‘as laboratories rush to implement high-through-

put SNP methods’ (Sobel et al. 2002). In practice, the

GoldenGate assay has been reported to be highly accu-

rate in humans, with error rates in the order of 0.3–0.4%

(Oliphant et al. 2002; Fan et al. 2003). However, far more

variable error rates, ranging from zero to around 4% per

reaction, have been reported for non-model organisms

(Akhunov et al. 2009; Lepoittevin et al. 2010; Yan et al.

2010; Chancerel et al. 2011; Grattapaglia et al. 2011) and

the exact causes of this variation are unclear.

An ideal opportunity for exploring the prevalence and

causes of GoldenGate genotyping error in a non-model

species is provided by the Antarctic fur seal (Arctocephalus

gazella). On Bird Island, South Georgia, a breeding colony

of this species has been studied since the 1970s, with an

aerial walkway providing unprecedented ease of access

for tissue sampling and the collection of detailed behavio-

ural observations, which started in 1994. Genetic analysis

using nine hypervariable microsatellite loci has shown

that most if not all pups are conceived ashore (Hoffman

et al. 2003) and hence that lifetime reproductive profiles

can be constructed for virtually every territory-holding

male. Heterozygosity at the same panel of markers has

also been shown to correlate with virtually every fitness

trait measured to date, from male reproductive success

through body size to attractiveness to females (Hoffman

et al. 2004, 2007, 2010a). However, because the markers

used are both anonymous and few in number, the mecha-

nisms underlying these associations remain unclear

(Hoffman et al. 2010b). To circumvent this problem, a

transcriptome assembly was recently generated (Hoffman

2011) from which we have begun to develop functionally

annotated genetic markers (Hoffman & Nichols 2011).

The aim of this study was to develop a high-quality,

genome-wide distributed panel of SNPs for the Antarctic

fur seal using the GoldenGate assay. A total of 144 puta-

tive SNPs identified from the transcriptome assembly

were genotyped in 480 individuals. Replicate individuals

were included, allowing us to quantify genotyping error
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rates and to evaluate the efficacy of three main

approaches for driving down the genotyping error rate

for the resulting data set. After having stringently filtered

out unreliable genotypes, we also explored relationships

between several relevant parameters and assay conver-

sion success.

Materials and methods

Tissue sampling and DNA extraction

Skin biopsy samples were collected from 440 fur seal

individuals at a designated study colony on Bird Island,

South Georgia (54º 00¢ S, 38º 02¢ W) during the austral

summers of 2000 ⁄ 2001–2008 ⁄ 2009. Sampling procedures

are described in detail by Hoffman et al. (2003). Skin sam-

ples were transferred to Dimethyl Sulphoxide saturated

with salt and stored individually at )20 �C. Total geno-

mic DNA was extracted using an adapted Chelex 100

protocol (Walsh et al. 1991) followed by phenol-chloro-

form purification (Sambrook et al. 1989). Each sample

was then quantified using PicoGreen (Invitrogen) fluo-

rometry. DNA concentrations averaged 96.8 ng ⁄ lL and

ranged from 3.4 to 243.1 ng ⁄ lL.

Transcriptome assembly and SNP discovery

A fur seal transcriptome assembly was previously gener-

ated using protocols described by Hoffman (2011).

Briefly, a normalized cDNA library derived from skin

samples collected from twelve individuals was sequenced

on a Roche GS-FLX Titanium DNA sequencer (Roche

Diagnostic). A total of 1 443 397 reads with a mean length

of 286 bp were generated. These were assembled de novo

using Roche Newbler assembler version 2.3 into 23 025

isotigs, which in turn clustered into 18 576 isogroups (dif-

ferent isotigs from a given isogroup can be inferred as

alternative splice-variants). The mean isotig length was

854 bp and the average depth of coverage was 19.4·. Basic

Local Alignment Search Tool (BLASTX) sequence similarity

searches to the non-redundant (nr) database with an

e-value threshold of 1e)4 produced matches for 10 825

isotig sequences (47.0%), with 76.9% of the top matches

being to mammals and these most frequently comprising

the dog. Restricting the BLAST search set to canine

sequences, the majority of isotigs (n = 22 541, 97.9%) were

also mapped to unique locations within the dog genome.

A final set of BLAST searches against a subset of sequences

with known Gene Ontology (GO) annotations recovered a

total of 111 446 annotation terms.

Single nucleotide polymorphism detection was con-

ducted using the Swap454 pipeline (Brockman et al.

2008) which incorporates a phred-based quality score into

the SNP-calling algorithm to reduce the false-positive

rate. The phred score is an estimate of the probability that

the corresponding base-call is correct, based on the image

intensities recorded during sequencing. The Swap454

program first maps the raw sequence reads back to the

assembled isotigs, ignoring alignments having <80%

identity. It then scores these alignments by adding indels

plus mismatches and declares a read ambiguous if the

score for its best alignment exceeds a one-fourth of the

score of the second-best. We specified an 11-base Neigh-

bourhood Quality Standard (NQS) of 20 ⁄ 15 (i.e. for the

parameter ‘MIN_QUAL’, we specified at least quality

‘20’ at the central base and a window of five bases on

each side with a neighbourhood quality ‘NQ’ of at least

‘15’). No more than two mismatches and zero indels were

allowed in this window. Using only these mapped reads,

and taking into account an error model for the 454 data,

Swap454 then determines which positions are called as

SNPs according to two user-specified thresholds. The first

of these thresholds, ‘MIN_RATIO’ corresponds to the

fraction of reads that differ from the reference sequence at

a given position and the second, ‘MIN_READS’ to the

number of copies present of the minor allele. To minimize

the possibility of false positives arising from sequencing

error, we applied stringent SNP discovery criteria, setting

MIN_RATIO to 0.1 (meaning at least 10% of the reads at

this position must differ from the reference sequence to

call a SNP) and MIN_READS to 6. The parameter

‘NEED_RC’ was set to ‘True’ meaning that reads need to

be seen aligned in both directions to call a SNP. This

identified a total of 1599 putative SNPs located within

1004 different isotigs. These were then further filtered

using a relational database to include only those that were

functionally annotated with respect to the nr database

and which mapped to known locations in the dog

genome. This reduced the total number of putative SNPs

to 1101, which were located within 613 different isotigs.

Single nucleotide polymorphism selection and Golden-
Gate assay design

Individual SNPs were selected to provide the best possi-

ble balance between two main criteria: genomic distribu-

tion and quality. To achieve our primary aim of

developing a genome-wide panel of SNPs in the Antarc-

tic fur seal, we selected SNPs distributed evenly across

chromosomes, as inferred using BLASTN to map our

isotigs to the closest matching sequences within the dog

(Canis familaris) genome. Additionally, we also evaluated

a subset of SNPs located within candidate genes relating

to immunity and growth (Hoffman & Nichols 2011). This

involved filtering all of the SNP-containing isotigs for a

subset with GO annotation terms containing the strings

‘immune’ or ‘growth’, which recovered 41 and 107 SNPs

respectively. The most promising of these, which met the
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additional criteria outlined below, were selected for

further development. These comprised seven immune-

related and twelve growth-related SNPs (See Table S1,

Supporting information for details). The former included

two SNPs residing within isotigs revealing sequence sim-

ilarity to Major Histocompatibility Complex (MHC) class

II genes.

Our second major criterion was SNP quality. To maxi-

mize the likelihood of SNPs successfully converting into

polymorphic assays, the following steps were taken: (i)

we selected only SNPs with at least 60 bases of flanking

sequence on either side to allow the design of allele and

locus-specific oligonucleotides; (ii) because the presence

of additional SNPs within the flanking sequences can

have a strong detrimental effect on assay performance

(Wang et al. 2008), we visually inspected all of the

sequences within the alignment viewing program Tablet

v1 (Milne et al. 2010) and discarded loci showing evidence

of flanking SNPs; (iii) isotigs carrying high SNP densities

were also avoided because of the possibility of these

having been assembled from paralogous loci (Sanchez

et al. 2009); and (iv) as a final guard against false-positive

SNPs and to maximize the informativeness of our panel,

we also opted not to develop assays for SNPs with in silico

Minor Allele Frequencies (MAFs) below 10%.

We initially submitted sequences for 200 putative

SNPs to Illumina for processing by the Assay Design

Tool (ADT). This software generates a score for each SNP

that takes into account the sequence conformation

around the SNP, the presence of repetitive elements and,

in the case of model organisms, sequence redundancy

against the available database. The resulting score varies

between 0 and 1, with values of 0.6 or above indicating

a high probability of conversion into a successful geno-

typing assay. ADT scores for the 200 SNPs ranged from

0.35 to 1 and averaged 0.86. Sequences that gave scores

below 0.6 were discarded, and a subset of 144 SNPs that

met the above criteria was subsequently selected to

populate the custom Oligo Pool Array (OPA). The ADT

scores for these SNPs ranged from 0.78 to 1 with a mean

of 0.92 (see Table S1, Supporting information for details).

Single nucleotide polymorphism genotyping

Highly multiplexed SNP genotyping was conducted

using Veracode GoldenGate genotyping on a BeadXpress

Reader at the Sheffield University Molecular Ecology

Laboratory following the manufacturer’s protocols.

Genotyping was carried out using 5 lL of each DNA

sample normalized to a concentration of £ 50 ng ⁄ lL. The

template was first subjected to oligonucleotide hybridiza-

tion involving two allele-specific primers and one

locus-specific primer for each of the 144 loci (the OPA

comprised a total of 432 custom oligonucleotides).

Allele-specific primers were then extended across the

SNP site and ligated to the locus-specific primer to create

a polymerase chain reaction (PCR) template. This step

was followed by universal PCR for all 144 loci using com-

plementary primers, with the allele-specific oligonucleo-

tides being labelled with either Cy3 or Cy5 to distinguish

each of the alleles. The fluorescent products were then

hybridized onto Sentrix Array Matrices (SAMs) contain-

ing beads coated with oligonucleotides complementary

to address sequences within each of the locus-specific

primers. Finally, the bead array signal was read using an

Illumina Beadstation 500 GX (Illumina, San Diego, SA).

Homozygous genotypes are expected to return predomi-

nantly Cy3 or Cy5 signals, whereas heterozygotes display

a signal of roughly equal strength in both channels.

Automated allele calling was implemented using the

software GenomeStudio 2010.1 (Genotyping module

1.7.4; Illumina). This program normalized the intensity

data for each of the loci and then assigned each sample a

cluster position. The resulting genotype output was then

produced with two quality measures, the GenTrain and

GenCall scores (Fan et al. 2003). The GenTrain score pro-

vides a locus-specific measure that takes into account the

quality and shape of the genotype clusters and their rela-

tive distances from one another. The GenCall score, esti-

mated for each individual at each SNP, allows

individuals or loci to be ranked. Genotypes with lower

GenCall scores are located further away from the centre

of clusters and are therefore considered less reliable. We

only accepted loci with a GenTrain score ‡0.25 and only

called individual genotypes with GenCall scores ‡0.25.

These scores represent stringent thresholds previously

applied in studies of humans (Fan et al. 2003) and other

species (Namroud et al. 2008; Sanchez et al. 2009; Lep-

oittevin et al. 2010). After calling the data automatically

(dataset1), we then checked each of the loci manually

within GenomeStudio and excluded from further analy-

sis any SNPs that did not show clear patterns of cluster

separation (see Fig. 1c,d for examples). This process

yielded data set 2. Following Yan et al. (2010), we then

generated a third data set in which minor manual adjust-

ments were made to the clustering to allow the re-scoring

of any genotypes that we believed to be either ambiguous

or incorrect. Finally we removed any samples from the

analysis that had call rates <0.9, as we suspected these

samples may be prone to error at those loci for which

they were called (data set 4).

Estimation of genotyping error rates and multilocus
heterozygosity

Nine individuals were genotyped in duplicate following

Hoffman & Amos (2005b) to estimate overall reproduc-

ibility. The error rate per reaction was calculated as the
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number of genotypes that differed divided by the total

number of comparisons made (Bonin et al. 2004). We also

calculated multilocus standardized heterozygosity (SH)

for each individual using the program Rhh (Alho et al.

2010).

Data analyses

Genepop (Raymond & Rousset 1995) was used to calcu-

late observed and expected heterozygosities for each of

the loci and to test for deviations from Hardy–Weinberg

equilibrium and for linkage disequilibrium among pairs

of loci. To explore factors potentially influencing whether

or not a given assay successfully converted into a high-

quality polymorphic SNP, we constructed a Generalized

Linear Model (GLM) within R (R Development Team

2005). Conversion was modelled as a binary response

variable (coded as 0 = failed and 1 = successful) using a

binomial error structure. The following predictor vari-

ables were fitted: class of SNP (as a factor with transi-

tion = 0, transversion = 1), depth of sequence coverage at

the SNP (accepted reads only), MAF (accepted reads

only) and ADT score plus all second-order interactions.

Using standard deletion-testing procedures (Crawley

2002), each term was then progressively dropped from

models unless doing so significantly reduced the amount

(a) (b)

(c) (d)

Fig. 1 Examples of clustering results obtained for the Antarctic fur seal single nucleotide polymorphism (SNP) array. Each point repre-

sents the mean normalized intensity derived from a population of beads for a single sample. ‘Norm R’ (y-axis) is the normalized sum of

the intensities of the two channels (Cy3 and Cy5). ‘Norm Theta’ (x-axis) is ((2 ⁄ p)Tan)1 (Cy5 ⁄ Cy3)) where a value near 0 represents a

homozygote for allele A (denoted by red points) and a value near 1 represents a homozygote for allele B (denoted by blue points). Het-

erozygotes fall approximately mid-way between these values and are denoted by purple points. Samples not scored at a given locus due

to their not having passed the GenCall threshold of 0.25 are denoted by black points. The numbers of samples called by GenomeStudio

for each of the three possible genotypes are shown below the x-axis (thirteen failed samples were removed from the data set leaving a

total of 467). (a) Classical three-cluster pattern for a SNP considered successful and polymorphic; (b) A second polymorphic SNP show-

ing greater scatter; (c) A locus showing ‘cluster compression’, in which the clusters cannot be clearly distinguished because of their being

closer to one another than expected; (d) A locus showing ambiguous clustering. We classified c and d as genotyping failures.
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of deviance explained. The change in deviance between

full and reduced models was distributed as chi-square

with degrees of freedom equal to the difference in

degrees of freedom between the models with and

without the term in question. For all models, distribu-

tions of standardized residuals about regressions were

inspected to verify that they were approximately

normally distributed.

Results

Automated single nucleotide polymorphism calling
(dataset 1)

Fully automated analysis within GenomeStudio using a

GenTrain threshold of 0.25 resulted in all 144 putative

SNPs being validated. Most of the loci showed clear clus-

tering patterns (see Fig. 1, panels a and b for examples)

and received correspondingly high GenTrain scores

(mean = 0.72). Nine loci were monomorphic in all of the

samples tested and were excluded from further analysis,

leaving 135 (93.8%) polymorphic SNPs. Applying a Gen-

Call threshold of 0.25 to the scoring of individual geno-

types, 13 individuals (2.7%) failed to generate data at any

of the 144 loci. After excluding these individuals from the

data set, the call rate averaged over all individuals and

loci was 94.6%. The genotyping error rate, estimated by

repeat-genotyping nine individuals, was estimated at

0.0040 per reaction (nine genotypes were called differ-

ently out of 2255 reactions compared).

Removal of poor-quality loci (dataset 2)

We next used GenomeStudio to visually inspect the clus-

tering results obtained for each of the 135 polymorphic

assays. A further 31 loci were found to exhibit unclear

clustering patterns, either because of poor cluster separa-

tion (n = 19, Fig. 1c) or because of a combination of poor

clustering and highly variable signal intensity (n = 12,

Fig. 1d). We considered these assays to be genotyping

failures despite their having passed the GenTrain thresh-

old. Retaining only clear, polymorphic SNPs (n = 104,

72.2%), the average GenTrain score increased to 0.77 and

the call rate increased to 99.4%. The genotyping error rate

for the reduced data set was estimated at 0.0016 (three

genotypes were called differently out of 1867 reactions

compared).

Manually adjusted clustering (data set 3)

We next revisited the data set of 104 high-quality loci and

visually inspected the automated scoring of each individ-

ual within GenomeStudio. Manual adjustments were

made to the clustering to allow the program to exclude

any ambiguous genotypes and to rescore any genotypes

that we believed to be incorrect. This resulted in one of

the SNPs no longer being scored as polymorphic, leaving

a total of 103 variable loci remaining. The resulting data

set had a marginally lower call rate than before (98.8%)

but the average GenTrain score increased to 0.80 indicat-

ing an improved fit of the manually adjusted clusters to

the data. The genotyping error rate was also further

reduced to 0.0005 (1 genotype was scored differently out

of 1839 reactions compared).

Removal of poor-quality samples (data set 4)

It is common practice when using microsatellites to dis-

card the multilocus genotypes of any individuals that fail

to generate interpretable PCR products at or above a

given number of loci. Although the exact threshold is

often arbitrarily defined, this approach makes good sense

because poor-quality samples tend not only to have

higher genotyping failure rates but also to suffer from

allelic dropout, which can produce ‘false homozygotes’

(Taberlet et al. 1999). To explore whether a similar bias

could exist within our SNP data set, we pooled data from

all 103 SNPs and calculated SH for each of the individu-

als. Comparing this with the number of SNPs scored, a

highly significant correlation was obtained (Fig. 2,

v2 = 99.66, d.f. = 1, P < 0.0001), although contrary to

expectations, the direction of the trend was negative. By

implication, samples excluded from being scored at mul-

tiple loci may show a bias towards being preferentially

assigned to heterozygous clusters at the remaining loci.

Fig. 2 Relationship between the number of single nucleotide

polymorphisms scored and individual multilocus standardized

heterozygosity. Grey circles depict samples that failed to score at

10% or more of loci. The solid line represents the regression fit-

ted to the entire data set (y = )0.0171x + 2.742, r2 = 0.175), while

the broken line represents the regression after excluding the grey

data points (y = )0.007x + 1.744, r2 = 0.002).
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Fortunately, the trend became no longer significant after

we excluded 18 samples that failed to score at 10% or

more of the loci (v2 = 3.67, d.f. = 1, P > 0.05), although

this also resulted in an additional locus being discarded

as monomorphic, leaving a total of 102 polymorphic

SNPs. The call rate increased to 99.5% but the overall

genotyping error rate was not further affected.

Descriptive statistics

Using the final, stringently filtered data set, we tested for

conformity to Hardy–Weinberg equilibrium (HWE) and

calculated a variety of summary statistics (see Table S2,

Supporting information for details). Three of the SNPs

were found to deviate significantly from HWE at

P < 0.05, although only one (Ag_SNP_1) remained signif-

icant following table-wide correction for the false discov-

ery rate (Benjamini & Hochberg 1995) implemented

within the program Q-value (Storey & Tibshirani 2003).

At this locus, all of the individuals were called as homo-

zygotes but for different alleles, a pattern attributable to

our having inadvertently developed this marker within

the mitochondrial NADH dehydrogenase gene. Tests for

linkage disequilibrium (LD) among the remaining 101

polymorphic SNPs yielded only nine P-values that were

robust to table-wide false discovery rate correction, con-

sistent with the broad inferred genomic distribution of

the marker panel (Fig. 3, Tables S1 and S2, Supporting

information). However, in five of nine instances where

significant LD was inferred, both loci mapped to adjacent

positions on the same chromosome in the dog

(Ag_SNP_10 and Ag_SNP_11 both mapped to chromo-

some 1, Ag_SNP_6 and Ag_SNP_103 to chromosome 10,

Ag_SNP_34 and Ag_SNP_43 to chromosome 36, Ag_

SNP_61 and Ag_SNP_103 to chromosome 10, and

Ag_SNP_58 and Ag_SNP_138 to chromosome 24) consis-

tent with their being physically linked.

Candidate gene markers

There is a growing interest in developing genetic markers

targeted towards specific classes of functionally relevant

gene (i.e. ‘candidate genes’). Consequently, we explored

the feasibility of developing SNPs within a subset of 19

isotigs with functional annotations relating to immunity

and growth (see Materials and methods for details).

Thirteen of these converted into high-quality polymor-

phic SNPs, giving a success rate that did not differ signifi-

cantly from that of non-candidate SNPs (13 ⁄ 19 versus

89 ⁄ 125, binomial proportions test, P > 0.05). Moreover,

all but one of the immune-related SNPs (85.7%) success-

fully converted, including two located within isotigs

revealing homology to MHC class II genes.

Assay conversion rates

Finally, to explore factors influencing the propensity of

GoldenGate assays to successfully convert into clearly

interpretable polymorphic SNPs, we constructed a GLM

(see Materials and Methods for details). Only in silico

Fig. 3 Genomic distribution of 101 polymorphic nuclear single nucleotide polymorphisms inferred by mapping isotigs to the dog

(Canis familiaris) genome.
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MAF was found to explain significant deviance in con-

version success (v2 = 7.32, d.f. = 1, P = 0.007). Unexpect-

edly, the slope of the relationship was negative, implying

that SNPs with low to intermediate in silico MAFs were

more likely to convert into successful assays than those

with MAFs approaching 0.5.

Discussion

Although SNPs are rapidly emerging as a marker of

choice for many population genetic applications, they

have not yet been widely applied to natural populations

of non-model organisms. Consequently, examining the

efficacy of assay design and measuring and reducing the

genotyping error rate remain important challenges, par-

ticularly given that many SNP genotyping technologies

were initially developed for use in humans. Here, we

successfully developed a genome-wide panel of SNPs for

a marine mammal, the Antarctic fur seal, while also

exploring several approaches for reducing the genotyp-

ing error rate. We demonstrate highly repeatable SNP-

calling after a combination of removing poor-quality loci,

manually editing clusters within GenomeStudio and

excluding unreliable samples.

Single nucleotide polymorphism genotyping errors

Theoretically, enhanced automation of genotyping and

scoring should allow SNP genotyping error rates to be

driven far lower than is achievable for microsatellites. In

practice, however, highly variable GoldenGate genotyp-

ing error rates have been reported for non-model organ-

isms, ranging from zero to around 4% per reaction

(Akhunov et al. 2009; Lepoittevin et al. 2010; Yan et al.

2010; Chancerel et al. 2011; Grattapaglia et al. 2011). Our

initial error rate of 0.4% per reaction falls towards the

lower end of this range, but we were nevertheless able

to identify several sources of error that could have a

bearing on why rates vary so greatly from system to

system.

The first main source of error we identified in our SNP

data set was locus-specific. Upon visual inspection, over

20% of loci (n = 31) validated by GenomeStudio were

found to exhibit unclear clustering patterns, either due to

poor cluster separation or variable to low signal intensi-

ties. Removal of these loci resulted in a 2.5-fold reduction

in the genotyping error rate, consistent with a previous

study reporting a ninefold reduction after omitting just

four out of 188 SNPs with the highest error rates (Lep-

oittevin et al. 2010). An alternative to identifying poor-

quality loci by eye is to apply stringent ad hoc reliability

thresholds. For example, Grattapaglia et al. (2011) only

scored SNPs with median GenCall scores greater than or

equal to 0.4 and with a call rate of 95% or above. How-

ever, without visual inspection and depending on the

exact thresholds applied, this approach risks discarding

data of adequate quality.

The second source of error we observed relates to the

automated scoring of genotypes within GenomeStudio.

Following the approach of Yan et al. (2010), we made

minor manual adjustments to the clustering of each locus

to allow the program to re-score any genotypes that were

either ambiguous or likely to be incorrect. However, in

contrast to Yan et al. (2010) who did not directly quantify

the effect of their adjustments on the quality of the result-

ing data, we were able to demonstrate a greater than

3-fold reduction in the genotyping error rate, even after

having previously filtered poor-quality loci from the data

set. Thus, although manual cluster adjustment is clearly

undesirable for large-scale projects (Yan et al. 2010), it

may prove a valuable way of minimizing errors in small-

to medium-scale studies.

A third source of error documented in this study was

sample-specific, with a highly significant negative corre-

lation being found between SH and the number of SNPs

scored. This indicates a tendency for samples that per-

form poorly in the assay to be preferentially assigned to

heterozygous rather than homozygous clusters and is

probably related to the fact that heterozygous clusters are

usually more scattered on the x-axis (i.e. they have a lar-

ger variance in normalized theta) than homozygous ones

(see Fig. 1a,b for examples). Fortunately, the relationship

became no longer significant after removing a small num-

ber of samples that failed to score at 10% or more of loci,

suggesting a relatively straightforward means of mitigat-

ing the problem. Nevertheless, the effect on individual

samples was in some cases extreme, with two samples in

particular yielding SH values over twice that of the mean

SH of the full data set (2.11 and 2.06 vs. 1.00) and well

outside the interquartile range (0.89–1.09). If overlooked,

this could have led to erroneous conclusions being drawn

about the distribution of individual heterozygosity in the

population, particularly if the inclusion of unreliable

genotypes were to generate an artefactual correlation in

heterozygosity among loci that could be interpreted as

evidence for inbreeding depression (Balloux et al. 2004).

An alternative to filtering samples on the basis of the

proportion of SNPs scored would be to use another qual-

ity criterion, such as p50GC, the 50th percentile (or mode)

of the distribution of the GenCall scores for a given indi-

vidual. Genotypes with lower average GenCall scores

tend to be located further away from the centre of clus-

ters and are therefore considered to be less reliable. How-

ever, GenCall scores provide an imperfect measure of

cluster separation because they are based on the degree

to which the two homozygote clusters are separated from

the heterozygote cluster rather than the degree of separa-

tion of the two homozygote clusters (Hyten et al. 2008).
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Moreover, because heterozygous clusters tend to be more

diffuse than homozygous clusters per se, individuals who

are heterozygous for many loci will also tend to have

higher average GenCall values. This leads to the predic-

tion that SH and p50GC could, under certain circum-

stances, be negatively correlated even in the absence of

genotyping error.

Assay conversion rates

Even after having stringently filtered our data set, result-

ing in a substantial proportion of loci being discarded as

either low quality or monomorphic, our rate of conver-

sion into polymorphic SNPs still compares favourably

with similar studies based exclusively on in silico

resources (e.g. 12.5–19.5% in Maritime pine (Chancerel

et al. 2011) and 40.6% in Catfish (Wang et al. 2008)). There

are several potential reasons for this. Most obviously,

sequencing errors can lead to the identification of false-

positive SNPs, especially where sequence coverage is low

(Wang et al. 2008). However, we guarded against this by

applying stringent SNP-calling thresholds. For example,

our requirement of a minimum 6· depth of coverage of

the minor allele led to assays being designed for isotigs

with an average of 57· total coverage (range = 12–433·),

substantially higher than reported for most previous

studies.

A second factor known to impact rates of assay con-

version is flanking sequence quality, including the possi-

ble presence of additional SNPs or intron-exon

boundaries close to the targeted marker (Wang et al.

2008; Grattapaglia et al. 2011). Although the latter is diffi-

cult to guard against in the absence of a reference gen-

ome, we conducted a thorough in silico inspection of each

SNP and its flanking regions, allowing us to discard any

loci that were closely flanked by other polymorphisms,

areas of low sequence coverage or homopolymer tracts.

We were also careful to select assays with ADT scores

well in excess of Illumina’s recommended threshold of

0.6 (see Materials and methods).

Another potential pitfall relates to the assembly of par-

alogous sequences, which can lead to the identification of

false-positive SNPs (Smith et al. 2005; Sanchez et al. 2009).

This can be particularly problematic for species that have

undergone recent genome duplications, such as many

commercial crop species and some vertebrates including

salmonids. Usually, assays targeted towards these

regions will tend either to result in no signal (Smith et al.

2005; Sanchez et al. 2009) or to report all samples as being

heterozygous (Hosking et al. 2004; Sanchez et al. 2009).

However, cases of ‘cluster compression’, where the two

homozygous clusters are shifted together, have also been

reported for SNPs residing within near-identical para-

logues in species with highly duplicated genomes (Hyten

et al. 2008; Yan et al. 2010). Moreover, it has also been cau-

tioned that it may prove difficult generally to distinguish

between true heterozygote clusters and those resulting

from targeted sequence redundancy (Yan et al. 2010),

although the latter should in many instances lead to vio-

lation of HWE (Lee et al. 2008). Fortunately, pinnipeds do

not have particularly large or complex genomes (Du &

Wang 2006) and our use of Swap454 may also partially

compensate for this problem because the program only

calls SNPs on the basis of reads that assemble reliably to a

single isotig (Brockman et al. 2008). However, we took the

additional precaution of avoiding designing SNPs within

isotigs carrying qualitatively high SNP densities, as these

are more likely to originate from paralagous loci (Sanchez

et al. 2009). This appears to have been largely successful,

because only six of our failed assays exhibited clustering

patterns indicative of cluster compression (for an exam-

ple, see Fig. 1c). Moreover, only a single SNP was found

to deviate significantly from HWE after correction for the

false discovery rate, and this was because of the locus in

question having inadvertently been designed within a

mitochondrial gene.

To test whether additional factors might also have

contributed to assay success or failure, we constructed a

GLM. In contrast to several previous studies (Wang et al.

2008; Lepoittevin et al. 2010; Chancerel et al. 2011), we

found no effect of the type of SNP (transition vs. transver-

sion), depth of sequence coverage or Illumina’s quality

score, the latter combining information about flanking

sequence complexity and context. One reason for this

could be that our relatively small sample size of loci,

combined with an above-average conversion rate, gave

us little power to dissect apart the underlying causes of

assay failure. Alternatively, many of these variables

might not have come into play because of our stringent in

silico filtering criteria. For example, we only evaluated

assays with ADT scores above the arbitrary threshold of

0.6. In contrast, Lepoittevin et al. (2010) reported a signifi-

cant effect of ADT score, but this was driven primarily by

poorly converting assays with ADT scores in the range

0.4–0.6. We nevertheless detected a significant effect of in

silico MAF on the conversion rate, although contrary to

our initial expectations, the slope of the relationship was

negative. The exact reasons for this are unclear, although

if paralogous loci were sequenced at roughly equal

depth, any fixed differences residing within them should

be manifest as false-positive SNPs with in silico MAFs

close to 0.5.

Overall performance of the assay in Antarctic fur seals

Our findings also add to a growing body of evidence sug-

gesting that, despite imperfect conversion rates, Golden-

Gate genotyping can perform remarkably well for SNPs
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derived in silico from non-model organisms. Thus, even

after excluding poor-quality loci and samples, we

obtained over 45 000 high-quality individual SNP geno-

types at the cost of <€10 000 and 2 weeks spent in the lab-

oratory. This compares favourably with a similar sized

Antarctic fur seal microsatellite data set (5000 individuals

genotyped at 9–76 loci) that has taken over a decade to

amass using manual techniques (J. Hoffman, unpub-

lished data). Moreover, our final SNP genotyping error

rate (0.0005 per reaction) is roughly an order of magni-

tude lower than that previously estimated for our micro-

satellite data set (Hoffman & Amos 2005b). Finally, our

attempts at targeting SNPs within candidate genes were

surprisingly successful, 13 of 19 assays converting into

polymorphic SNPs, including two residing within MHC

class II like-genes.

Conclusion

We have demonstrated the feasibility of developing and

genotyping a panel of genome-wide distributed SNPs in

a marine mammal species. Our approach, based on the

development of GoldenGate assays from a skin transcrip-

tome, should be particularly useful for marine mammal

taxa as well as other species that can only be remotely

biopsy sampled.
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Table S1 Details of 144 GoldenGate SNP assays developed from

the Antarctic fur seal transcriptome assembly (see Materials and

methods for details). ‘Chromosome in the dog’ refers to the

genomic location inferred by mapping each isotig to the dog

(Canis familaris) genome. Basic Local Alignment Search Tool

(BLAST) results indicate the top match of each isotig to the non-

redundant (nr) database. Gene Ontology codes are given only

for isotigs that recovered functional annotations relating to

growth or immunity. In silico Minor Allele Frequency and depth

of coverage refer to the exact site of each SNP and are given only

for reads accepted as unambiguous by the program Swap454

(Brockman et al. 2008). Assay Design Tool scores vary between 0

and 1, with values of 0.6 or above indicating a high probability

of conversion into a successful genotyping assay.

Table S2 Polymorphism characteristics of 102 polymorphic SNP

assays in 440 Antarctic fur seals individuals (see Materials and

methods for details). The GenTrain score takes into account the

quality, shape and degree of separation of the genotype clusters,

with higher values indicating improved clustering (Fan et al.

2003).

Please note: Wiley-Blackwell are not responsible for the content

or functionality of any supporting information supplied by the

authors. Any queries (other than missing material) should be

directed to the corresponding author for the article.
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