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Abstract

Many studies use genetic markers to explore population structure and variability within
species. However, only a minority use more than one type of marker and, despite increasing
evidence of alink between heterozygosity and individual fitness, few ask whether diversity
correlates with population trajectory. To address these issues, we analysed data from the
Steller’s sea lion, Eumetiopias jubatus, where three stocks are distributed over a vast
geographical range and where both genetic samples and detailed demographic data have
been collected from many diverse breeding colonies. To previously published mitochondrial
DNA (mtDNA) and microsatellite data sets, we have added new data for amplified fragment
length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled
from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with
only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns
of genetic diversity were found at the three markers, with Nei’s gene diversity tending to be
higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while
the highest mtDNA values were found in the eastern stock. Overall, and despite strongly
contrasting demographic histories, after applying phylogenetic correction we found little
correlation between genetic diversity and either colony size or demography. In contrast,
we were able to show a highly significant positive relationship between AFLP diversity
and current population size across a range of pinniped species, even though equivalent
analyses did not reveal significant trends for either microsatellites or mtDNA.
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Introduction

Molecular genetic analysis of population structure is
now a commonplace tool in the armoury of those wish-
ing to understand the dynamics of natural populations.
Currently, two classes of marker dominate those used in
this context: maternally inherited mitochondrial DNA
(mtDNA) and presumed neutral microsatellites (Zhang
& Hweitt 2003; Schlotterer 2004). These markers provide
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contrasting views of a given scenario, the mitochondrial
sequences allowing reconstruction of maternal lineages
while the microsatellites give a joint window of both
maternal and paternal contributions. When combined,
these contrasting views can become synergistic, with
the mitochondrial markers uncovering patterns of mater-
nally directed natal site fidelity, while the microsatellites
help to quantify levels of paternal gene flow among
subpopulations (e.g. Waits ef al. 2000, Miller-Butter-
worth ef al. 2003). Given this, it is perhaps surprising
that studies combining both markers are the exception
rather than the rule.
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Inaddition to differences in mode of inheritance, markers
can also differ in their rate of evolution. Mitochondrial
sequences tend to evolve faster than nuclear sequences
while microsatellites evolve much faster than, for example,
protein isozymes (e.g. Ellegren 2000; Ballard & Whitlock
2004; Schlotterer 2004). Rapidly evolving markers tend to
be most useful for capturing recent demographic patterns
and generally offer greater resolution due to their higher
allelic/haplotypic diversities but may saturate over longer
periods of time (Selkoe & Toonen 2006). However, deeper
patterns such as residual signals of glacial refugia could
potentially benefit from the use of more slowly evolving
markers such as amplified fragment length polymorphisms
(AFLPs). Arguably, even fewer studies compare markers
that evolve over different timescales relative to those that
compare nuclear and mitochondrial markers.

The primary aim of many studies of this nature is to
understand current patterns of gene flow and genetic
diversity in the context of historical patterns of demographic
expansion and contraction, for example by identifying
putative population bottlenecks or vicariant events that
created isolated subpopulations. However, recent work
has highlighted the possible importance of genetic diver-
sity in determining the health of both individuals (e.g. Colt-
man et al. 1999; Acevedo-Whitehouse et al. 2003) and
perhaps by implication, populations. Indeed, a long-stand-
ing question in conservation genetics concerns the extent to
which populations carrying high genetic diversity perform
in some sense better than populations with low diversity,
either as a consequence of identified bottlenecks or perhaps
as an inherent property of a species. Here, use of contrast-
ing types of markers is desirable, since it is quite possible
for high, recently acquired microsatellite diversity to mask
longer-term patterns in the underpinning additive genetic
variability upon which selection is most likely to act.

Little is currently known about the link between genetic
diversity and fitness at the population level, although
relatively heterozygous vertebrate populations have been
shown to experience lower parasite loads (Whiteman et al.
2006), improved body condition (Knaepkens et al. 2002),
faster growth rates (Rowe et al. 1999; Cenaet al.2006) and
greater survivorship (Saccheri et al. 1998; Shikano & Tan-
iguchi 2002; Andersen et al. 2004). A recent meta-analysis
of both plantand animals (Reed & Frankham 2003) suggests
that genetic diversity could explain as much as 15-20% of
variation in population fitness. However, the majority of
studies to date have used allozymes, which may not be
selectively neutral. In addition, although heterozygosity
has been linked to a number of population fitness traits,
surprisingly few studies have looked for a link between
genetic diversity and the rate at which natural populations
grow or decline.

Although a positive relationship between population
heterozygosity and viability seems intuitive, it may not

always be that simple. Two recent studies have examined
how levels of heterozygosity vary during the course of well-
documented demographic challenges. Vazquez-Dominguez
et al. (1999) found that heterozygosity increased during
population declines in the spiny pocket mouse, and Valsecchi
et al. (2004) found that Mediterranean striped dolphins
dying early in an epizootic were significantly less het-
erozygous than those dying later. These studies imply
that natural selection may sometimes remove relatively
homozygous individuals from populations during demo-
graphic declines, raising the counter-intuitive possibility that,
at least in the short term, declining populations may in fact
be more heterozygous than stable ones. Furthermore, the
purging of genetic load during population bottlenecks
could generate a scenario in which relatively homozygous
populations do well in the face of challenges.

The Steller’s sea lion, Eumetopias jubatus, provides an
opportunity to explore range-wide patterns of genetic
diversity and to study the relationship between genetic
variation and population viability in a natural metapopu-
lation of a vertebrate species. The largest of the extant
otariids, this species is distributed across the North Pacific
Rim and throughout the Bering and Okhotsk Seas (Fig. 1).
The worldwide population was once estimated to number
about a quarter of a million animals (Kenyon & Rice 1961),
but by 1989 the count had fallen to a little over 100 000
(Loughlinef al. 1992). This steep decline attracted worldwide
attention and led to the Steller’s sea lion being listed as
Threatened under the US Endangered Species Act in 1990.
Genetic studies using mtDNA (e.g. Bickham et al. 1996) led
to the recognition of two well-differentiated stocks, eastern
and western, which were listed as Threatened (eastern)
and Endangered (western) in 1997. Subsequently, a larger
study using mtDNA argued for the partitioning of the
western stock to yield an additional Asian stock. Biparentally
inherited microsatellite markers yield qualitatively similar
findings (Hoffman et al. 2006), but also suggest that two
genetically distinct subpopulations may exist within the
western stock (O’Corry-Crowe et al. 2007). More recently,
on the basis of morphological differences between skulls
from the western and eastern stocks, Philips ef al. (in press)
elevated these to subspecies, designated the western
Steller’s sea lion (Eumetopias jubatus jubatus) and Loughlin’s
northern sea lion (Eumetopias jubatus monteriensis), respec-
tively.

The reasons why certain Steller’s sea lion populations
have experienced a precipitous decline while others
have remained stable or even increased are not readily
apparent. Suggested causes of the decline include
changes in food availability caused by overfishing and/
or a regime shift in the North Pacific Ocean, legal and
illegal shooting and predation (Loughlin & York 2000;
Atkinson et al. 2008). Whatever the reason or reasons
might be, it is clear from the highly subdivided nature
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Fig. 1 Map showing the locations of 23
Steller’s sea lion rookeries sampled in 70°
this study. The grey area indicates the
current distribution of the species.
Stocks and regions are as defined by
Baker et al. (2005). For details of
regions and rookeries, including the

numbers of individuals genotyped, see 60°
Table 1.
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of this metapopulation that the extirpation of rookeries
could lead to an erosion of overall genetic variability
within the species.

Here we analyse a data set comprising 285 Steller’s sea
lions genotyped at AFLP loci together with previously
published data sets for microsatellites (598 individuals
genotyped at 13 loci) and mtDNA (1559 individuals
sequenced at 238 bp of D-loop HVR-1). Our aims were to
assess overall levels of genetic diversity, to test whether
AFLPs show the same signal of genetic structure as the other
two marker types, to examine the relationship between
genetic diversity and both colony size and rate of decline,
and finally to place observed levels of genetic diversity in
the context of other pinniped species.

Materials and methods

Tissue sample collection and DNA extraction

We utilized 285 tissue samples that were collected as
part of a previous study (Baker et al. 2005) from pups
at their natal rookeries ranging from Iony Island in the
Okhotsk Sea to St. George Reef in northern California
(Table 1, Fig. 1). Samples were obtained from rear
flipper punches and stored individually in the preserva-
tive buffer 20% dimethyl sulphoxide (DMSO) saturated
with salt. Total genomic DNA was extracted using a
standard phenol-chloroform protocol (Sambrook et al.
1989).

AFLP genotyping

The AFLP protocol was similar to that used by Vos et al.
(1995) and is described in detail by Dasmahapatra et al.
(online early). Briefly, 100400 ng of genomic DNA was
first digested using Tagl (5 U in a 10-uL volume at 65 °C for
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2 h) and then with EcoRI (5 U ina 20-pL volume at 37 °C for
2 h). Tagl and EcoRI adapters were then ligated onto the
digested DNA using T4 DNA ligase (1 U in a 50-uL volume
at37 °Cfor3 h), and the resulting products diluted 10-fold
in 10 mMm Tris-HCl and EDTA (0.1 mwm, pH 8.0). For the
pre-amplification, 5 pL of ligation mix was added to
50 pL polymerase chain reaction (PCR) containing Tris-HCl
(10 mm, pH 8.3), MgCl, (1.5 mm), KCI (50 mwm), dNTPs
(0.2 mm), Tag polymerase (1 U) and 50 ng each of the
Tagl-C and EcoRI-A pre-amplification primers (the primer
sequences were 5-GATGAGTCCTGACCGAC-3" and
5-GACTGCGTACCAATTCA-3’, respectively). Following
30 pre-amplification cycles (30 sat94 °C,60 sat50 °Cand
60 s at 72 °C), the products were diluted 10-fold with
10 mwm Tris-HCland EDTA (0.1 mwm, pH 8.0). For the selec-
tive amplification, 2.5 pL of the diluted pre-amplification
product was added to a 12.5-pL reaction containing Tris-HCl
(10 mm, pH 8.3), MgCl, (1.5 mwm), KCI (50 mm), dATPs,
dTTPamd dGTP (0.2 mmeach), dCTP (0.04 mu), o P-dCTP,
Tag polymerase (0.2 U), Tagl selective primer (30 ng) and
EcoRI selective primer (5 ng). Samples were subjected to 13
selective amplification cycles (30 sat94 °C, 60 sat65 °C,
reducing by 0.7 °C each cycle,and 60 sat72 °C), followed
by a further 23 cycles (30 sat94 °C,60 sat56 °Cand 60 s
at 72 °C). PCR products were resolved by electrophoresis
on standard 6% polyacrylamide sequencing gels and
detected by autoradiography. AFLP profiles were assessed
and scored manually by an experienced operator (J.H.).
Only clear, polymorphic bands that could be scored in all
individuals were included, these being recorded as
1, present and 0, absent. Eight different selective primer
combinations were used (Table 2) to generate 238 AFLP
loci that could be scored unambiguously across all of the
samples.

Although AFLPs tend to be highly reproducible (Vos
et al.1995; Jones et al. 1997), as with other genetic markers
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Table 1 Numbers of Steller’s sea lion samples genotyped at AFLPs, microsatellites and mtDNA control region (see methods for details).

Stocks and regions are as defined by Baker et al. (2005)

Number of samples genotyped

Stock Region Rookery AFLPs Microsatellites mtDNA
Asian Sea of Okhotsk-OKH 1. Iony Island 15 25 100
2. Yamsky Island 15 25 80
Kuril Islands-KUR 3. Lovushki Island 10 15 39
Kamchatka Peninsula-KAM 4. Kozlova Cape 10 25 59
Western Commander Islands-COM 5. Medny Island 15 25 126
Western Aleutian Islands-WAL 6. Buldir Island 9 12 45
Central Aleutians—-CAL 7. Kiska Island 25 24 72
8. Seguam Island 10 24 31
9. Yunaska Island 10 22 40
Eastern Aleutian Islands-EAL 10. Akutan Island 10 56 85
11. Ugamak Island 10 100 99
Bering Sea-BER 12. Walrus Island 10 13 42
Western Gulf of Alaska-WGA 13. Clubbing Rocks 10 19 35
Central Gulf of Alaska-CGA 14. Chowiet Island 10 25 32
Prince William Sound-PWS 15. Fish Island 10 25 47
16. Seal Rocks 10 50 102
Eastern Southeastern Alaska-SEA 17. White Sisters Island 15 9 49
18. Hazy Island 10 26 103
19. Forrester Island 15 10 215
British Columbia-BRC 20. N. Danger Rocks 10 10 10
21. Triangle Island 10 8 13
Oregon-ORE 22. Rogue Reef 16 25 84
Northern California-NCA 23. St. George Reef 20 25 51
Entire range 285 598 1559

Table 2 Numbers of AFLP loci generated by eight AFLP selective primer combinations

Total no. of loci

Taql primer (5'-3")

EcoRI primer (5-3")

No. of polymorphic loci

GATGAGTCCTGACCGA-CAC
GATGAGTCCTGACCGA-CAG
GATGAGTCCTGACCGA-CGA
GATGAGTCCTGACCGA-CCA
GATGAGTCCTGACCGA-CCA
GATGAGTCCTGACCGA-CCA
GATGAGTCCTGACCGA-CTG
GATGAGTCCTGACCGA-CAG

GACTGCGTACCAATTC-AGC
GACTGCGTACCAATTC-ATG
GACTGCGTACCAATTC-ACA
GACTGCGTACCAATTC-AAC
GACTGCGTACCAATTC-AGC
GACTGCGTACCAATTC-ATG
GACTGCGTACCAATTC-ATG
GACTGCGTACCAATTC-ACA

Total

33
31
16
29
24
33
40
32
238

N R R W WO N

w
N

genotyping errors can easily accrue (Bonin ef al. 2004;
Hoffman & Amos 2005; Pompanon et al. 2005; Meudt &
Clarke 2007). Consequently, we estimated the genotyping
error rate for our data set by independently regenotyping
and blind scoring 24 individuals (almost 10% of the samples).
The error rate per reaction was quantified following Bonin
et al. (2004) as the number of mismatching genotypes
divided by the number of bands compared.

Data analysis

The final AFLP character matrix consisted of 67 830 binary
characters representing the presence and absence genotypes
of 285 individuals at 238 loci. To examine patterns of
genetic structure, we used the program AFLP-SURV version
1.0 (Vekemans 2002) to calculate pairwise Fsr values among
rookeries and regions, to generate Fgr matrices for each of
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1000 bootstrapped data sets, and to conduct a permutation
test for overall genetic differentiation using 10 000 per-
mutations of the data set. A consensus neighbour-joining
(NJ) tree was then generated using the Neighbour, Consense
and Fitch modules in pruyLP (Felsenstein 1993). The
significance of the correlation between pairwise geographical
and genetic distance matrices was assessed using Mantel
tests with 10 000 iterations implemented in the Mantel
Nonparametric Test Calculator version 2.0 (Liedloff 1999).
To explore range-wide patterns of genetic diversity, Nei’s
gene diversity was calculated for each rookery using
AFLP-SURV (Vekemans 2002).

We next conducted a Bayesian cluster analysis using
Structure 2.2.3 (Pritchard et al. 2000; Falush et al. 2007). This
program uses an iterative approach to cluster the genotypes
into K populations without knowledge of the population
membership of individuals. The approach essentially
subdivides the data set in a way that maximizes Hardy-
Weinberg equilibrium and linkage equilibrium within the
resulting clusters. The membership of each individual in a
population is then estimated as g, which varies between 0
and 1 with the latter indicating full population membership.
We ran five independent runs for K = 1-10using 1 x 10°
Markov chain Monte Carlo (MCMC) iterations after a
burn-inof 1 x 10°, specifying the correlated allele frequencies
model and assuming admixture. The most likely number
of populations was evaluated using both the maximal
value of Ln P(D), a model-choice criterion that estimates
the posterior probability of the data, and AK, an ad hoc
statistic based on the second order rate of change of the
likelihood function with respect to K (Evanno et al.
2005).

To enable comparisons across markers, we also analysed
data from 13 highly polymorphic microsatellites (n = 598,
Hoffman et al. 2006) and from a 238-bp section of the
mitochondrial D-loop HVR-1region (n = 1559, Bakeret al.
2005; J. W. Bickham, unpublished data). The three data sets
overlapped considerably, with the individuals typed at
AFLPs being a subset of those genotyped for microsatel-
lites, which were in turn a subset of the much larger sample
of individuals typed for mtDNA. Genetic differentiation
among rookeries was estimated at both of these markers
using Wright's F-statistics (Wright 1951) calculated in
Arlequin 2.0 (Schneideret al.2000). In addition, in response
torecent concerns raised about the reliability of Fsrin highly
polymorphic systems, we also calculated D for our
microsatellite data set following the method of Jost (2008),
equation 14. Overall, results using this approach were very
similar to, but less significant than those obtained using
classical Fsr, suggesting that Fsr has adequate resolution in
our system. For comparability with other studies, we
therefore used Fgr. Nei's gene diversity was also calculated
for microsatellites using FsTaT 2.9.3 (Goudet 1995) and for
mtDNA using DNAsP (Rojas & Rojas 1995).

© 2009 Blackwell Publishing Ltd
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To explore the relationships between genetic diversity at
each of the three markers and population size, we constructed
a series of general linear models (GLMs). Population sizes
were log transformed both to minimize heteroscedasticity
and because population growth trajectories tend to be
exponential. Population size estimates were available for
the period 1957-2006 inclusive, but the number and timing
of records for each of the rookeries varies greatly, from as
few as five to as many as 35 observations (Table 3). To
standardize our procedure, we therefore defined two
critical years: 1960, reflecting the best balance between a
date before the declines begin yet where data coverage is
still adequate, and 2006, reflecting the current status. For
each of these two time points, we estimated the most likely
population size by means of linear extrapolation/interpo-
lation in plots of log (population size) on year using all
available data for that colony. The 1* values of the regres-
sions areshown in Table 3 and averaged 0.614. Population
size estimates are, of necessity, somewhat crude but visual
inspection of the graphs suggests they are adequate for our
purposes. Initially, we constructed GLMs of gene diversity
ateach of the three different markers fitting log (population
size) as a continuous predictor variable. However, because
of the presence of three genetically distinct stocks with on
average very different population trajectories (the eastern
population was originally small but is now increasing,
while the Asian and western stocks were initially large but
have since declined), we also constructed additional GLMs
of gene diversity fitting both log (population size) and
stock, the latter as a factor with three levels corresponding
to the Asian, Western and Eastern stocks.

Next, to explore relationships between genetic diversity
and the rates at which different Steller’s sea lion rookeries
have declined, we calculated the growth trajectory of each
rookery as the log of the gradient of year on population
size. We then constructed GLMs of growth trajectory fitting
gene diversity as a single, continuous explanatory variable.
As with the GLMs of genetic diversity, we then addition-
ally controlled for stock membership by fitting stock as an
additional predictor variable (as a factor with three levels)
in GLMs of growth trajectory. All GLMs were fitted using
R (R development team 2005) as full models and then
simplified following Crawley (2002) by stepwise deletion
of non-significant terms (strictly, terms whose deletion
did not cause a significant reduction in the proportion of
the null deviance explained by the model).

Next, we used two different approaches implemented in
the program Bottleneck 1.2.02 (Piry et al. 1999) to test whether
any of the three Steller’s sea lion stocks have experienced a
recent reduction in effective population size or a genetic
bottleneck. The first of these approaches exploits the fact
that during a bottleneck, alleles are lost more rapidly than
heterozygosity at neutral markers, generating a transient
‘heterozygosity excess’. This was assessed using the micro-
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Table 3 Summary of population size estimate data for 23 Steller’s sea lion rookeries spanning the period 1957-2006 inclusive. The gradi-
entand r* values refer to the regressions of time on log population size, with positive gradients indicating population growth and negative
gradients indicating decline

Stock Rookery No. of observations First observation Last observation Gradient 7
Asian Iony Island 7 1974 2002 0.010 0.661
Yamsky Island 12 1974 2003 0.006 0.397
Lovushki Island 23 1967 2001 -0.012 0.361
Kozlova Cape 17 1982 2003 -0.021 0.420
Western Medny Island 35 1967 2002 -0.024 0.703
Buldir Island 13 1968 2004 -0.058 0.942
Kiska Island 12 1979 2004 -0.048 0.858
Seguam Island 12 1979 2004 -0.028 0.506
Yunaska Island 13 1979 2006 —-0.033 0.779
Akutan Island 21 1965 2006 -0.024 0.726
Ugamak Island 18 1969 2006 -0.028 0.579
Walrus Island 5 1982 1994 -0.054 0.881
Clubbing Rocks 18 1957 2006 -0.007 0.460
Chowiet Island 15 1957 2004 -0.029 0.829
Fish Island 15 1957 2006 -0.017 0.638
Seal Rocks 16 1973 2006 -0.016 0.537
Eastern White Sisters Island 13 1979 2004 0.006 0.301
Hazy Island 13 1979 2005 0.015 0.889
Forrester Island 12 1979 2005 0.004 0.235
North Danger Rocks 9 1971 2002 0.013 0.633
Triangle Island 7 1971 2998 0.012 0.874
Rogue Reef 23 1977 2001 0.016 0.782
St. George Reef 11 1990 2001 0.010 0.140

satellite data set for each of the stocks separately under a
range of mutation models ranging from the infinite allele
model (IAM) through the two-phase mutation model
(TPM) with 70%,90%, 95% and 99% single-step mutations
(with a variance of 30%), to the stepwise-mutation model
(SMM). Statistical significance was assessed using the Wil-
coxon test. The second test implemented using Bottleneck
was one for a shift away from an L-shaped allele frequency
distribution to one with fewer alleles in low frequency cate-
gories (Luikart & Cornuet 1997).

Finally, we analysed genetic diversity in a representative
panel of other pinnipeds, both to provide a context for
interpreting the diversity seen in our focal species, and also
to learn the extent to which the levels of diversity exhibited
by our three classes of marker correlate with likely demo-
graphic history. Our panel of species includes some that
have been heavily exploited to near extinction and either
recovered or stayed endangered, and others that have
expanded greatly to become some of the most abundant
large mammals on the planet. For this analysis, we collated
published and unpublished data on microsatellites,
mitochondrial D-loop sequences and AFLP markers from
as many pinniped species as were available (Table 4).
Recognized subspecies were treated separately, as were the
Western and Eastern Atlantic populations of the grey seal,
Halichoerus grypus. To avoid ascertainment bias, micro-

satellite data were only accepted if based on markers that
were derived from the species being analysed. We also
excluded markers that were out of Hardy-Weinberg
equilibrium and/or exhibited high frequencies of null
alleles. For each of 12 species/subspecies, average observed
heterozygosity was calculated over all of the microsatel-
lites that met our criteria. Mitochondrial D-loop sequences
(with the 5" end of tRNA-Pro) together with haplotype fre-
quencies were available for 19 species/subspecies. For
these species, a section corresponding to positions 39-327
in the Arctocephalus pusillus mitochondrial genome
(AM181018) was used to calculate haplotype diversity. The
length of sequence varied among the species due to the
presence of indels and in some cases, only sequence data
for a slightly shorter section were available. Within each
species, sequences were aligned using ClustalW and by
eye, and sequence diversity n (Nei 1987) was calculated
using MEGA 4 (Tamura ef al. 2007). AFLP genotypes were
generated for 14 different pinniped species for which ade-
quate samples were available. We chose a target sample
number of five as the best compromise between generat-
ing representative profiles and including as many species
as possible. Five is probably too small for many classes of
marker, but for AFLPs the low sample size is partly com-
pensated for by the large number of traits (= bands) that
can be scored. AFLP diversity was calculated as the
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Table 4 Genetic diversity at AFLP markers (proportion of polymorphic loci), microsatellites (observed heterozygosity) and mtDNA control

region sequence diversity in a variety of pinniped species

Proportion of Observed microsatellite

polymorphic heterozygosity

Sequence diversity, 7,
at mtDNA D-loop
(sequence length used,

Family Species AFLP loci (no. of loci, no. of samples) no. of samples)
Phocidae Crabeater seal, Lobodon carcinophaga — 0.813 (6, 25)! —
Grey seal, Halichoerus grypus 0.133 0.784 (5, 805)* 0.014 (327, 1025)°
(Eastern Atlantic population)
Eastern Atlantic Harbour seal, Phoca vitulina vitulina 0.056 0.238 (6, 50)* 0.0054 (320, 159)°
Western Atlantic Harbour seal, Phoca vitulina concolour — 0.390 (5, > 40)° 0.012 (320, 18)°
Eastern Pacific Harbour seal, Phoca vitulina richardsi — — 0.014 (320, 38)°
Western Pacific Harbour seal, Phoca vitulina stejnegeri ~— — 0.015 (320, 12)°
Harp seal, Pagophilus groenlandicus 0.215 — —
Hawaiian monk seal, Monachus schauinslandi — —_ 0.0001 (337, 50)”
Hooded seal, Cystophora cristata 0.168 — 0.030 (334, 123)°
Leopard seal, Hydrurga leptonyx 0.144 0.626 (7, 21)* —
Northern elephant seal, Mirounga angustirostris — — 0.004 (299, 150)° 1©
Southern elephant seal, Mirounga leonina 0.066 0.597 (2, 263)*° 0.021 (301, 48)'°
Spotted seal, Phoca largha — — 0.024 (335, 66)'!
Weddell seal, Leptonychotes weddellii — 0.737 (17, 96)* —
Otariidae  Antarctic fur seal, Arctocephalus gazella 0.113 0.744 (15, 20)'> 3 0.038 (304, 192)'*
Australian Sea lion, Neophoca cinerea — — 0.016 (288, 194)"°
California sea lion, Zalophus californianus 0.109 0.602 (9, 58)'® 0.020 (283, 52)7
Cape fur seal, Arctocephalus pusillus — — 0.031 (285, 105)'®
Galapagos fur seal, Arctocephalus galapagoensis 0.055 — —
Galapagos sea lion, Zalophus californianus wollebacki 0.037 0.677 (15, > 20)'* % 0.005 (285, 336)'
Guadalupe fur seal, Arctocephalus townsendi — — 0.021 (212, 32)*
Juan fernandez fur seal, Arctocephalus philippii — — 0.031 (298, 28)*
Northern fur seal, Callorhinus ursinsus 0.130 — —
South American fur seal, Arctocephalus australis 0.069 — —
Steller sea lion, Eumetopias jubatus 0.063 0.507 (6, 20)** 0.011 (196, 2599)*
Subantarctic fur seal, Arctocephalus tropicalis — — 0.044 (299, 103)%°
Obeniidae Atlantic walrus, Odobenus rosmarus rosmarus — 0.800 (7, 57)%"* —
Pacific walrus, Odobenus rosmarus divergens 0.152 — —

1, Daviset al. (2002);2, Allenet al. (1995); 3, Amos, unpublished data; 4, Coltmanet al. (1996);5, Stanley et al. (1996); 6, Goodman (1997);
7, Kretzmann et al. (1997); 8, Coltman et al. (2007); 9, Weber et al. (2000); 10, Hoelzel et al. (1999); 11, Mizuno et al. (2003); 12, Hoffman et al.
(2008); 13, Hoffman (online early); 14, Hoffman, unpublished data; 15, Campbell (2003); 16, Hernandez-Velazquez et al. (2005);
17,Maldonadoet al. (1995); 18, Mathee et al. (2006); 19, Wolfet al. (2005); 20, Hoffman et al. (2007); 21, Wolf, unpublished data; 22, Weber
et al. (2004); 23, Goldsworthy et al. (2000); 24, Huebinger et al. (2007); 25, Bickham, unpublished data; 26, Wynen et al. (2000); 27, Buchanan

proportion of polymorphic bands. Population size
estimates were obtained from the Seal Conservation
Society website (www.pinnipeds.org) and where a range
was given, we took the average of the upper and lower
estimates.

Since the taxa (populations and species in the case of
intraspecific and interspecific analyses respectively) are
related, we also explored the use of phylogenetic correction.
For this we chose the program Continuous as implemented
in BayesTraits 1.0 (Pagel 1997; Pagel 1999). This program
accepts as input a phylogeny plus data from two variables
and then uses either a likelihood-based approach or Monte
Carlo Markov Chain to estimate the degree to which the
variables are correlated given the phylogeny. We chose to

© 2009 Blackwell Publishing Ltd

implement the likelihood option in which the likelihood of

the data given the phylogeny is calculated twice, once
under the assumption of independence and a second time
under the assumption that a correlation is present. Twice
the difference between these likelihoods can then be inter-
preted as a chi-squared value with one degree of freedom.

Results

We genotyped 285 Steller’s sea lions sampled from 23 natal
rookeries representing 15 regions and three stocks (Fig. 1,
Table 1) at eight selective AFLP primer combinations,
yielding 238 putatively homologous loci (= bands) that
could be scored unambiguously (Table 2). The calculated
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Fig. 2 The relationship between geographical and genetic distance
calculated using AFLPs among 23 Steller’s sea lion rookeries. The
linear regression line is shown to indicate the underlying trend
(* = 0.135).

genotyping error rate was low at 0.012 per band (11
differences observed out of 888 band-band comparisons).
Of the discrepancies observed between the two sets of
genotypes, four (36.4%) were attributed to scoring or data
entry errors and the remaining seven (63.6%) were due to
the stochastic appearance or disappearance of bands as
similarly documented by Boninet al. (2004). Overall, levels
of AFLP variability were low, with only 37 out of the 238
lociscored (15.5%, Table 2)being polymorphicin our large
and geographically diverse sample. To facilitate interspecific
comparisons, Milot et al. (2007) proposed quantifying
AFLP variability using Ps.,, the proportion of loci where at
least 5% of individuals carry the minor genotype. Psq, for
our data set is 5.9%, far lower than the normal range of
values reported for vertebrates (summarized by Milotet al.
2007) and is comparable with values obtained for wandering
(5.1%) and Amsterdam (2.1%) albatrosses which were
interpreted by Milotet al. (2007) as being extremely low.

Genetic structure and isolation by distance

A statistically significant pattern of genetic differentiation
was observed across the species range (overall Fst among
rookeries = 0.050, P < 0.001 using 10 000 permutations
of the AFLP data set). Pairwise Fgr values correlated
positively with the geographical distance among rookeries
(Fig. 2, Mantel test, r = 0.367, n = 23 colonies, P < 0.001),
yielding a similar pattern to that obtained previously
using 13 microsatellite loci (Hoffman et al. 2006). Also
concordant with previous analysis of the same samples
using microsatellites, no relationship between genetic and
geographical distance was apparent when only within-stock
comparisons were made (Asian stock, Mantel’'s ¥ = —0.098,
n = 4, P =0.491, Western stock, Mantel’'sr = 0.061,n = 12,
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Fig. 3 Results of the Structure analysis of the AFLP data set.
(a) Mean + SE Ln P(D) values based on five replicates for each
value of K; (b) Mean + SE cluster membership coefficients for
the three clusters (colour coded in black, light grey and dark grey,
respectively) for each of the Steller’s sea lion stocks.

P = 0.348, Eastern Stock, Mantel'sr = —-0.027,n = 7,P = 0.486)
suggesting that the overall pattern is driven by among-stock
comparisons. As expected, genetic distances calculated
from the AFLP data matrix were positively correlated with
equivalent values derived from both microsatellites and
mtDNA (Mantel tests, r = 0.371,n = 23, P = 0.002 and
r = 0.326, n = 23, P < 0.001, respectively), suggesting that
all three of these markers provide concordant estimates of
genetic differentiation. To further explore patterns of genetic
divergence, we constructed a neighbour-joining tree at
the regional level using 1000 bootstrapped Fsr matrices.
The resulting topography was poorly resolved with the
majority of nodes failing to gain 50% or greater bootstrap
support, probably because of the small number of infor-
mative loci on which the genetic distances are calculated.
Nevertheless, the regions of the eastern stock (SEA, BRC,
ORE and NCA) form a distinct clade (data not shown), in
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diversity across the current range of the 0.20
Steller’s sea lion calculated for (a) AFLPs,
(b) microsatellites, and (c) mtDNA. Rookeries
of the Asian, Western and Eastern stocks
are denoted by black, grey and white-filled
bars, respectively.
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support of previous studies using both mtDNA and
microsatellites (Bakeret al.2005; Hoffmanet al.2006).

Bayesian cluster analysis

We next implemented a Bayesian cluster analysis of the
AFLP data set using the program Structure (Pritchard et al.
2000; Falush et al.2007) in order to determine whether any
genetic substructure could be detected without knowledge
of the sampling locations of individuals. The resulting
posterior probabilities were highly concordant among
replicate runs, with the highest average value indicating
the most likely number of population groups, K. Our data
yielded a best estimate of K = 3 (Fig. 3a), which was also
supported by a peak in Evanno et al.’s (2005) AK statistic.
However, despite good support for K = 3, manyindividuals
were poorly resolved in terms of group membership,
probably because of the low resolution afforded by 37
unidominant markers. Consequently, we summarized
the data by averaging the group membership coefficients
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for all individuals in each of the three stocks (Fig. 3b).
Average group membership coefficients were found to
vary significantly among the stocks (in a two-way aNova
fitting group, stock and the group:stock interaction, the
interaction term was highly significant, Fygs6 = 11.4,
P < 0.0001). The first two clusters showed an increase
in mean membership progressing from Asian through
Western to the Eastern stock, while the third cluster shows
the opposite, a pattern that is broadly consistent with
isolation by distance.

Genetic diversity, population size and demography

To explore range-wide patterns of genetic diversity, we
calculated Nei’s gene diversity for each rookery using each
of our three markers: AFLPs, microsatellites and mtDNA
(Fig. 4). Significant variation was found among the three
stocks for both AFLPs and microsatellites (one-way
ANOVAS, F 9 = 3.60, P = 0.046 and F, >, = 8.00, P = 0.003,
respectively) with the lowest Nei's gene diversity values
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being found among the rookeries of the Eastern stock at
both of these markers. In contrast, mtDNA diversity does
not vary significantly among the three stocks (aNOva,
Fy0 = 2.95,P = 0.075). Moreover, for mtDNA the six high-
est gene diversity values all occur in the Eastern stock, the
stock which has lowest nuclear diversity.

To relate genetic diversity at the three classes of marker
to population size, we regressed gene diversity against log
population size in 1960, chosen to reflect the best balance
between a date before the declines begin yet where data
coverage is still adequate and estimated by linear extra-
polation from the available data. Nei’s gene diversity was
significantly correlated with the estimated population size
in 1960 for microsatellites (F1,; = 8.14; P = 0.010) but not
for AFLPs or mtDNA (F;5; = 0.35; P = 0.562 and Fj =
0.01; P = 0.921, respectively). However, when these regres-
sions were repeated as GLMs of genetic diversity with popula-
tion size fitted as a continuous variable and stock
membership (e.g. Asian, Western or Eastern) fitted as a fac-
tor, neither of these terms were retained in the final model
for AFLPs and mtDNA (although stock approached signif-
icanceatP = 0.055and 0.075, respectively), and only stock
was retained as a predictor of microsatellite diversity,
explaining 45.0% of the null deviance (Fp50 = 8.17, P =
0.003).

Since the 1960s, the Western stock has undergone rapid
decline, while the Eastern stock has increased. Conse-
quently, we repeated the same analysis as above but this
time fitting log population size in 2006 as a predictor of
genetic diversity. Direct population count data were available
for six rookeries of the Western Stock, and for the remain-
ing rookeries, population size was obtained by linear
extrapolation. AFLP and microsatellite diversity were
both negatively associated with population size and
mtDNA diversity was weakly but positively associated
with population size, although none of these relationships
were significant and only microsatellites approached sig-
nificance (F;; = 4.30; P = 0.050). Again, when stock and
population size in 2006 were fitted in full models of genetic
diversity, no terms were retained for AFLPs and mtDNA,
and only stock was retained in the GLM of microsatellite
diversity.

Previous studies have found links between genetic
diversity and population viability in a range of organisms
(e.g. Saccheriet al. 1998; Roweet al. 1999; Whiteman et al.
2006). Therefore, we sought to establish whether genetic
diversity was linked to the rates at which different Steller’s
sea lion rookeries have declined. Microsatellite diver-
sity explained a significant proportion of the variation in
log population trend when fitted alone in a GLM
(F1p1 = 11.17; P = 0.003), although the direction was in the
reverse direction to that expected (e.g. growing colonies
had lower gene diversity). In contrast, AFLPs and mtDNA
did not explain significant variation when fitted alone

(F121 = 191; P = 0.180 and F; »; = 0.53; P = 0.474, respec-
tively). Moreover, when full models of log population
trend were constructed in which genetic diversity and
stock were fitted together as predictors, only stock was
retained (Fp9 = 23.29; P < 0.0001), explaining 70.0% of the
total deviance.

To either confirm or refute the above trends, we ignored
stock and instead used phylogenetic correction to allow for
non-independence among populations. For this analysis,
we explored the use of three alternative input phylogenies:
(i) based on pooled data from AFLPs, mtDNA and micro-
satellites in which each pairwise distance was taken as the
average of the three marker classes, normalized to force
equal contribution from each marker class and with any
negative distance values rounded to zero; (ii) what we
consider subjectively the ‘best’ phylogeny, as judged by its
ability to place neighbouring populations close to each
other, based on the microsatellite Fgr values; and (iii) a
non-genetic phylogeny based on great circle geographical
distances. In each case and for each marker class, we tested
for a correlation between genetic diversity and (i) population
size in 1960, (ii) population size in 2006, (iii) the slope of
population trend. Unfortunately, the results were highly
variable. Using the geographical distance and microsatellite
phylogenies, none of the tests were significant (ignoring
one case of P = 0.03 that is best attributable to type I error).
In contrast, using the full genetic phylogeny, we find that
both AFLP and microsatellite diversity are correlated
with population size in 1960 and 2006 (P < 0.002 in
every case), while mtDNA diversity predicts the overall
trend (P < 0.001).

Genetic bottleneck analyses

To determine whether low AFLP diversity in the Steller’s
sea lion could be at least partly due to a recent reduction in
the effective population size, we next interrogated our
microsatellite data set using the program Bottleneck (Piry
et al. 1999). Significant heterozygosity excess was found
in all three stocks using the IAM and within the Asian
Stock using the SMM (Table 5). However, little evidence
for a bottleneck was found using any of the probably
more realistic TPM models. Moreover, none of the stocks
deviated significantly from a normal L-shaped distribution
of allele frequencies.

Patterns of genetic diversity across the Pinnipedia

Although Ps., appears low in the Steller’s sea lion relative
to most other vertebrates, there are problems in comparing
different studies including the use of different restriction
enzymes and selective primer combinations, variation in
the geographical range of sampling and interobserver
variation. Therefore, we sought to place the observed value
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Table 5 Results of heterozygosity excess tests for the three Steller’s sea lion stocks under a range of different mutational models using 13

polymorphic microsatellite loci (Hoffman et al. 2006)

Stock  Test

Mutation model

IAM TPM 70 TPM 90 TPM 95 TPM 99 SMM

Asian  No. of loci with heterozygosity excess
Wilcoxon test

P value (two tails)
Western No. of loci with heterozygosity excess
Wilcoxon test

P value (two tails)
Asian  No. of loci with heterozygosity excess

Wilcoxon test

P value (two tails)

11 10 7 6 5 4

P value (one tail for heterozygosity deficiency) 0.999 0.905 0.658  0.368  0.658  0.047
P value (one tail for heterozygosity excess)

0.002 0.108  0.368  0.658  0.368  0.960
0.003 0.216  0.735 0.735 0.735  0.094
12 9 8 7 6 6

P value (one tail for heterozygosity deficiency) 0.998 0960 0.632 0393  0.170  0.095
P value (one tail for heterozygosity excess)

0.003 0.047 0.393 0.632 0.847 0.916
0.005 0.094 0.787 0.787 0339 0.191
10 9 7 6 5 5

P value (one tail for heterozygosity deficiency) 0.997 0.773 ~ 0.554 0294  0.122  0.073
P value (one tail for heterozygosity excess)

0.004 0.249 0946 0.729 0.892  0.936
0.009 0.497 0946 0.588 0244 0.146

IAM, infinite alleles model; TPM, two-phase model (the number refers to the proportion of stepwise mutations); SMM, stepwise-mutation

model. Significant P values are highlighted in bold.

into context by testing whether low AFLP diversity is a
feature of pinnipeds in general by exploiting a data set
comprising five samples each of 14 different pinniped
species genotyped at eight AFLP loci and by collating data
from microsatellite primer notes and papers containing
mtDNA data (Table 4).Figure 5shows that the Steller’s sea
lion has low diversity relative to most of the other pinniped
species at all three markers. Moreover, a strong positive
correlation was found between current population size
and the proportion of polymorphic AFLP loci (#? = 049,
n = 14, P = 0.006), suggesting that the low diversity at
AFLP markers in this species may be a consequence of
historically low population sizes. A similar but weaker
pattern was obtained for mitochondrial DNA @ = 0.29,
n = 19, P = 0.017), but not for microsatellites (> = 0.14,
n = 12, P = 0.231). As with the population data, we also
conducted tests using phylogenetic correction. For the
phylogeny, we exploited the tree of Higdon et al. (2007),
using the corrected divergence dates to produced branch
lengths. When these trends were analysed using the program
Continuous to correct for phylogenetic non-independence,
the correlation between current population size and
marker diversity was positive for all three markers and
highly significant for AFLPs (P < 0.0001) but not for micro-
satellites (P = 0.67) ormtDNA (P = 0.43).

Discussion

Herein, we report a study using three different commonly
used genetic markers, microsatellites, AFLPs and mito-
chondrial DNA to assess levels of genetic diversity and
population structure in the Steller’s sea lion, and then to
place this species in the wider context of pinnipeds in
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general. We find a significant pattern of isolation by
distance and some evidence of a correlation between
population size and genetic diversity. However, these
patterns appear largely driven by differences among three
different stocks with contrasting histories. Controlling for
stock structure either by fitting stock as an extra predictor
variable, or by implementing phylogenetic correction
largely eliminates any population-specific effects. Among
the pinnipeds, the Steller’'s sea lion seems to carry
unexpectedly low levels of diversity, a pattern that is best
reflected in AFLP markers which show the strongest
correlation between diversity and current population size
of the three markers we examined.

Expectations from different markers

Different markers are expected to reveal different aspects
of a population’s history, depending on their mode of
inheritance and mutation rate. Thus, mitochondrial DNA
will reveal patterns of maternally directed site fidelity
while microsatellites, with their high mutation rates, will
tend to recover high levels of variability following a
population bottleneck faster than less mutable AFLP
markers. Pinnipeds exhibit rather puzzling patterns of
diversity that may be elucidated by the use of multiple
marker types. Thus, elephant seals have extremely low
diversity and were severely bottlenecked, but various
fur seals were hunted just as hard and for longer yet carry
the highest levels of microsatellite diversity seen among
pinnipeds. Within a species, the Steller’s sea lion has a
broad geographical distribution and in parts of its range,
populations are declining while elsewhere there appears to
be expansion. These contrasting demographies may be
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Fig. 5 Relationships between current estimated population size
and genetic diversity at (a) AFLPs (b) microsatellites and (c)
mtDNA across a range of pinniped species. White points indicate
the Steller’s sea lion. See Table 4 for details of sample sizes and
literature references.

associated with the descendents of glacial refugia, which
could inturn be reflected in distinct mitochondrial lineages.
Finally, if widely reported trends linking microsatellite
heterozygosity to individual fitness reflect a more general

tendency for greater genetic diversity to improve a
population’s health, we might expect that the contrasting
population trends seen among modern populations of
Steller’s sea lions will correspond to each population’s
heterozygosity.

Genetic structure and links between diversity and
population decline

A pattern of isolation by distance is likely to arise under a
wide range of circumstances, even in potentially highly
mobile aquatic species such as pinnipeds (e.g. Allen et al.
1995; Goodman 1998; Campbell et al. 2007). For example,
in the grey seal, many adults show high levels of breeding
site fidelity and dispersal occurs mainly to available
neighbouring sites when an individual’s natal colony has
reached carrying capacity (Gaggiotti et al. 2002). One might
expect the Steller’s sea lion to be no exception, distributed
as it is over a vast geographical range in a series of breeding
rookeries along the Aleutian chain and beyond, and this is
what a naive analysis reveals. However, previous studies
have suggested the existence of at least two and possibly
three different stocks, possibly reflecting the existence of
historical ice age refugia (Bickham et al. 1996; Baker ef al.
2005; Harlin-Cognato et al. 2005). Indeed, more recent
morphological analysis has led to the suggestion that the
eastern and western stock might even be considered
subspecies (Phillips et al. in press). Once this structure has
been corrected for by fitting stock as an extra parameter,
the pattern of isolation by distance becomes non-significant,
suggesting that the main driver of the apparent isolation-
by-distance pattern that we observe is the presence of
rather dissimilar stocks. Use of Jost’s D instead of Fsr, in
theory allowing for the reduced resolution of Fsr in highly
polymorphic systems, if anything only weakened any
pattern of isolation by distance.

The presence of different genetically distinct stocks is
problematic for most of the genetic analyses one might
wish to conduct. This is because the shared ancestry within
a stock creates some degree of statistical non-indepen-
dence. To take an extreme example, if 10 populations were
sampled from each of two stocks, one with high diversity
and one with low diversity, any regression of diversity on
a trait linked to stock identity, such as recent demography
or geographical location, would tend to be highly significant
(20 data points and a clear trend), when in fact only two
fully independent observations exist. Our data feature the
same problem, with two main stocks, east and west, but
separate demographic trends for each of many subpopu-
lations (i.e. breeding colonies). When we ignore stock
structure, we find interesting patterns, but when stock
structure is properly controlled, either by fitting stock as a
predictor variable or by using phylogenetic correction,
most of these correlations are eliminated.

© 2009 Blackwell Publishing Ltd
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Our results using the program Continuous (Pagel 1997)
also point to the need to assess critically whether the
input phylogeny is valid. We obtained sharply contrasting
results depending on the phylogeny we used. Based on
data from all three markers pooled and normalized to
ensure equal contribution from each, we obtained evidence
of several perhaps suspiciously strong trends. However,
when we used either a non-genetic tree based on geographi-
cal distances or the phylogeny that we believe most accu-
rately reflects the likely true relationships among
rookeries, these trends appear no longer significant. As yet,
it is unclear which result is correct, although we prefer to be
conservative and assume that the agreement between two
contrasting but likely reliable trees provides the stronger
evidence. Conversely, the fact that the combined marker
phylogeny reveals trends not supported by two other trees
suggests that while the combined tree maximizes the
genetic information contributing to each genetic distance,
tension between the different markers probably under-
mines the tree’s reliability. Having said this, we feel this is
an area where further work would be beneficial.

The general failure to uncover clear relationships between
levels of genetic diversity and rookery size or population
trend is perhaps not surprising. On the one hand, the levels
of diversity that we find in this species appear rather low
compared with other pinnipeds, arguably making it more
difficult to resolve changes in diversity that might be
linked to demography. At the same time, the main disjunc-
ture within the metapopulation is between the Asian/
Western and the Eastern stocks, which are possibly even
two subspecies (Phillips et al. in press), implying that
within stocks there is appreciable gene flow among the
different breeding colonies. Such gene flow will tend to
mask or eliminate any possible differences in diversity that
might otherwise result from the declines and expansions
that have been documented over the last few decades.
Moreover, the timescale of change is rather brief relative to
the rate at which diversity is either lost or may accumulate,
being of the order of only a few generations. Thus, when
Bickham et al. (1998) used mtDNA to look for a loss in
diversity between 1976 and 1978 and the 1990s in populations
of the Central Gulf of Alaska, no significant differences
were found, suggesting that reductions in population size
over this period probably had a negligible effect on
genetic diversity at this marker. However, the sample
size used was small, including only 36 samples from the
1970s.

Levels of genetic diversity in the Steller’s sea lion

In terms of AFLP diversity in particular, the Steller’s sea
lion seems to carry very low diversity. To place this
observation in a broader context, we first attempted to
compare our value with those reported for a range of
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vertebrates by Milot et al. (2007). However, interspecific
comparisons of AFLP diversity are not straightforward.
First, relatively few studies give the proportion of the total
number of AFLP loci amplified that are polymorphic.
Second, biases may arise from the use of different restriction
enzymes (Taql/EcoRI produces more polymorphic banding
patterns in mammals, Ajmone-Marsanet al. 1997) or selective
primers (those containing a CG motif at their 3’ end tend to
amplify a higher proportion of polymorphic fragments,
Bensch & Akesson 2005; Milot et al. 2007). Third, some
studies sample over wider geographical ranges than others,
potentially capturing greater genetic diversity, and sample
sizes also vary. Inter-observer variation may also be
important, although Bonin et al. (2004) showed that even
with only very limited overlap in the specific bands scored
by different observers, the underlying phylogenetic signal
remains much the same. However, Milot’s use of Ps., at
least partly addresses these issues. For our data set, Pso, is
5.9%, which is low and comparable with the lowest values
reported by Milot, those for the wandering (5.1%) and
Amsterdam (2.1%) albatrosses which have undergone
severe population bottlenecks. However, our measure of
AFLP diversity may underestimate the true level of
genetic diversity because we excluded 18 polymorphicloci
that could not be scored reliably across all of the samples
and which, if included, would raise our value to 21.5%. This
represents another potential problem in comparing values
of diversity from different studies. Nonetheless, an allozyme
study of the Steller’s sea lion showed an almost complete
lack of genetic variability (Lidicker et al. 1981). Since
protein electrophoretic studies largely utilize relatively
conservative nuclear housekeeping genes, they are more
likely to produce results comparable to an AFLP analysis
than nuclear microsatellites or mtDNA.

An interesting observation is the contrasting pattern
of diversity between the two main stocks for nuclear
and mitochondrial markers, the eastern stock carrying the
greatest mtDNA diversity but the least nuclear diversity.
Several hypotheses can be advanced for why this might be
so. First, an appreciable component of the modern patterns
will relate to what happened during and immediately after
the last ice age. If the eastern stock lies closest to whatever
refugia existed, the general tendency for pinnipeds to
exhibit maternally directed site fidelity might have caused
the western stock to have been founded by only a subset of
mitochondrial lineages, despite receiving most of the
nuclear diversity due to higher levels of male-mediated
gene flow. A more general version of this concept would be
to state that while nuclear diversity tends to reflect total
population size within a stock, mitochondrial diversity
may instead be linked to the number and stability of breeding
colonies. Consequently, any demographic changes that
reduce population size but not colony number will tend to
erode nuclear more than mitochondrial variability, while



14 J. I. HOFFMAN ET AL.

local events that eliminate some colonies while allowing
others to expand may have the converse effect. One further
possibility that should not be discounted, particularly in a
diving mammal where energy management is paramount,
is that the mitochondrial genome could have at some point
come under natural selection. Finally, our results are by no
means unprecedented. For example, contrasting patterns
of diversity were also found using AFLPs and mtDNA in
the sonoma tree vole, with no population structure revealed
by the former, but two distinct lineages uncovered using
the latter (Blois & Arbogast 2006). Here, genetic diversity
was much higher for the mtDNA, re-emphasizing the
benefit of using multiple markers to guard against any one
yielding an unexpected /misleading pattern.

Ours is one of rather few studies that have examined pat-
terns of genetic diversity across the entire range of a widely
distributed species. It is generally recognized that higher
levels of genetic diversity usually occur towards the centre
of a species’ range (e.g. Arnaud-Haond et al. 2006 and Sch-
wartz et al. 2003), a pattern also seen in our data. The rea-
sons for such a pattern are multiple. Ficetola et al. (2007)
found that distance from glacial refugia and geographical
isolation together explain over 90% of variation in micro-
satellite diversity in the frog Rana latastei in northern Italy,
suggesting a major impact of sequential bottlenecks and / or
founder events. Similar patterns are seen even among mod-
ern humans, reflecting loss of diversity as we moved out of
Africa to colonize the world (Manica ef al. 2005; Prugnolle
et al. 2005). Interestingly, song sparrows distributed along
the Aleutian chain and hence overlapping with the Steller’s
sea lion distribution also reveal a stepwise loss of microsat-
ellites diversity, apparently due to founder events as the
species moved from island to island (Pruett & Winkler
2005).

Steller’s sea lions appear to have unexpectedly low levels
of genetic diversity, and one plausible explanation is a
population bottleneck. However, applying the program
Bottleneck, we failed to find any evidence of a recent severe
reduction in population size. This largely supports other
studies where although some species that have experienced
a documented bottleneck such as the northern elephant
seal have low diversity (Hoelzel et al. 1993), other species
that were hunted to a similar or greater extent, such as
many species of fur seal, currently have the highest levels
of diversity seen among pinnipeds (e.g. Hoffman et al.
2003) and seem unaffected by sealing (e.g. Matthee et al.
2006). Indeed, one of the only species where a recent
anthropogenic decline resulted in a detectable loss of
diversity, verified by analysis of both pre- and postbottleneck
samples, is the Mauritius kestrel, and this species declined
to a single pair. Consequently, it seems likely that the
patterns of diversity seen in modern populations will be
dominated by longer-term demographic trends and have
little to do with modern trends.

Interspecific comparisons

Even though short-term population trends appear to impact
little on genetic diversity, the same may not be true of
longer-term trends. Consequently, we examined a broad
range of pinniped species to test whether current population
size predicts diversity across the pinnipeds. Perhaps
surprisingly, we find that while mtDNA and microsatellite
diversity do not correlate significantly with population
size after phylogenetic correction, AFLP markers do. The
reason for the stronger relationship with AFLP markers is
unclear but may relate to the relative rates of evolution of
the three markers. Many of the largest changes in numbers
have occurred recently and have been quite dramatic, with
species of elephant seal, fur seal and sea lion having been
exploited to near extinction and then rebounding. There
are good reasons for believing that even these extreme
histories will have reduced levels of diversity rather little,
but any effects that are visible, both in terms of loss and
regain of diversity will be most apparent in the fastest
evolving markers which exhibit highest diversity, that is,
mtDNA and microsatellites. Such markers are therefore
more likely to be out of mutation—drift equilibrium, perhaps
to some degree scrambling the relationship between
diversity and current size. It would be interesting for future
studies to ask whether stronger correlations could be
obtained by using sighting data to reconstruct likely
population histories for each species and then to allow for
these in the estimation of current size. The strong result
obtained for AFLP markers is also surprising because our
sample sizes were small, at only five individuals per species.
In terms only of assessing variability, the few individuals are
in part compensated for by the scoring of large numbers of
loci, although larger sample sizes would likely refine our
estimates and, if anything, strengthen the AFLP result fur-
ther. A bigger issue is likely to be whether five individuals
can really represent a species across its entire range and pos-
sible population subdivisions. Our results surprisingly sug-
gest it can, both from the strength of the regression of
diversity on population size, and from the lack of structure
seen within the Steller’s sea lion. Clearly, this is an area
where further study is warranted.

Comparing microsatellite and AFLP markers, we find a
much stronger relationship with modern population size
for the AFLPs. This is unexpected because many pinniped
populations have in recent times experienced dramatic
fluctuations due to hunting and habitat loss, and it seems
logical that the faster evolving microsatellites would better
track these changes. One possible explanation is that
posthunting modern population sizes may have in many
cases re-attained carrying capacity and hence approximate
historical levels (e.g. Hodgson et al. 1998). If so, the slowly
evolving AFLP markers may, through lack of response to
rapid demographic change, exhibit a stronger correlation
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than microsatellites, which suffered a larger displacement
from equilibrium and are still catching up. An alternative
explanation is suggested by a recent observation that,
across diverse human populations, microsatellite length is
strongly predicted by heterozygosity (Amos et al. 2008).
Interpreted as support for a model in which heterozygote
genotypes are more mutable than equivalenthomozygotes,
this study suggests that for microsatellites at least, a simple
relationship between heterozygosity and population size
may not exist. Such a model might also help to explain why
otariids have high microsatellite diversity because in this
group hybridization between sister species is not unusual.
Under heterozygote instability, the large increase in heter-
ozygosity caused by hybridization would feed back to
increase microsatellite mutation rate and hence diversity.

Conclusion

Genetic diversity is widely accepted as an important
component of fitness and rare alleles can easily be lost
following population decline. We find that the Steller’s sea
lion has unusually low diversity even compared with
related species, with potential management implications.
However, despite rapid declines in population size,
particularly in rookeries of the western stock, we failed to
find significant trends between demography and genetic
diversity. This does not mean that such trends are absent,
but detection will require larger sample sizes collected over
a longer time period. In the meantime, the best way to
prevent further erosion of variability is probably through
active measures of intervention designed to prevent dis-
appearance of key rookeries such as in the western Aleutian
Islands where populations seem to be highly vulnerable.
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