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In this document we provide all the necessary code for reproducing the analyses presented in our paper. To
access the dataset and Rmarkdown file, please download this GitHub repository. Simply follow the link and
click on Download ZIP on the right-hand side of the page. An explanation of the files in the repository can
be found in the Readme file. Please don’t hesitate to contact Luke at luke.eberhart [at]gmail.conm if you
have any questions.

The structure of the code we present here follows the analyses presented in the Results section of the paper.
Prerequisites:

e For running the complete code you need a files subfolder containing the raw data downloaded from
data and output/bootstrap folders provided in the GitHub repository.

e The following packages are needed for analysis and can be easily installed from CRAN by uncommenting
the install.packages functions:

install.packages ("RMark")
install.packages ("stringr")
install.packages("ggplot2")
install.packages ("dplyr")
install.packages("grid")
install.packages ("gridExtra”)
install.packages ("reshape2")
install.packages ("RColorBrewer")
install.packages ("Rmisc")
install.packages("stats")
install.packages ("lme4")
install.packages("magrittr")
library (RMark)
library(stringr)
library(ggplot2)
library(dplyr)
library(gridExtra)
library(grid)
library(reshape2)

library (RColorBrewer)

library (Rmisc)

library(stats)

library (1lme4)
library(magrittr)

R I TR T S S S S S S Y



https://github.com/leberhartphillips/Ceuta_ASR_matrix_modeling
https://github.com/leberhartphillips/Ceuta_ASR_matrix_modeling
http://cran.r-project.org/

Loading data

To start, please load the following datasets into your R environment:

o data/chick_mark-recapture__data.txt contains the mark-recapture field data of chicks. Each row
is a single uniquely marked chick identified by their ring. The daily encounter history of an individual
is expressed in their ch, where a “1” indicates that an individual was encountered, “0” indicates it was
not encountered, and “” indicates that no survey took place on that day. year indicates the year during
which an individual was monitored and day_of season indicates the number of days since the start of
the breeding season that an individual hatched. sex describes the molecular sex-type of an individual
with “M” for males and “F” for females. brood_ ID is a unique brood identifier for the family from
which a chick hatched.

data/juvenile__adult__mark-recapture__data.txt contains the mark-recapture field data of juve-
niles and adults. Each row is a single uniquely marked individual identified by their ring. The annual
encounter history of an individual is expressed in their ch, where a “1” indicates that an individual
was encountered and “0” indicates it was not encountered. sex describes the molecular sex-type of an
individual with “M” for males and “F” for females. stage describes the stage at which an individual
was initially captured, where “J” indicates it was first captured as a chick, and “A” indicates it was
first captured as an adult.

data/breeding__data.txt contains the individual reproductive histories of all marked breeding adults
in the population. Each row is a nesting attempt uniquely identified by the nest ID. no_ chicks expresses
the number of chicks that hatched from the nest. clutch_size indicates the number of eggs in the nest
when it was initially discovered. year describes the year in which the nest was active. male and female
indicates the unique identity of the father and mother, respectively, with “male_ NA” and “female_ NA”
describing cases in which the other mate was not identified.

setwd ("~/Dropbox/Luke/R_projects/Ceuta_ASR_Matrix_Modeling")
chick <-
read.table("data/chick_mark-recapture_data.txt",
header = TRUE, colClasses = c("factor", "character","factor",
"numeric","factor","factor", "numeric"))

juvenile_adult <-
read.table("data/juvenile_adult_mark-recapture_data.txt",
header = TRUE, colClasses = c("factor",'"character","factor","factor"))

breeding_data <-
read.table("data/breeding_data.txt",
header = TRUE)

Quantifying mating system

To put our estimate of ASR in the context of breeding behavior, we quantified sex bias in mating system
based on behavioral obersvations from the field. Females of this species desert broods to seek serial mates

(Page et al. 2009). Thus, we expected that females would have more mates per year than males.

Step one: wrangle the data remove any cases in which one mate was not identified (i.e., “NA”)

mating_df <-
breeding_data[which(!is.na(breeding_data$female) & !is.na(breeding_data$male)),]

determine the number of families used in the mating system analysis (i.e. the sample size)



length(unique (mating_df$brood_ID))
#> [1] 456

bind the two mates together to make a unique pair

mating_df$pair <- as.factor(paste(mating df$female, mating_df$male, sep = "-"))

determine how many mating attempts each individual had each year

females <- reshape2::dcast(mating_df, female ~ year)
males <- reshape2::dcast(mating_df, male ~ year)

determine how many different mates each individual had over their lifetime in the popualtion
number_males_p_female <-

stats::aggregate(male ~ female, mating_df, function(x) length(unique(x)))
number_females_p_male <-

stats::aggregate(female ~ male, mating df, function(x) length(unique(x)))

join these two dataframes together and define as numeric
females <- dplyr::inner_join(females, number_males_p_female)
females[,c(2:8)] <-

lapply(females[,c(2:8)], as.numeric)
males <- dplyr::inner_join(males, number_females_p_male)
males[,c(2:8)] <-

lapply(males[,c(2:8)], as.numeric)

calculate the total number of mating attempts over each individual’s lifetime

females$attempts <- rowSums(females[, c(2:8)])
males$attempts <- rowSums(males[, c(2:8)])

calculate the number of years breeding

females$years <- rowSums(females[, c(2:8)] > 0)
males$years <- rowSums(males[, c(2:8)] > 0)

filter out all individuals that only had one mating attempt

females_no_1 <- dplyr::filter(females, male != 1 | years != 1 | attempts != 1)
males_no_1 <- dplyr::filter(males, female != 1 | years != 1 | attempts != 1)

tidy up dataframes then bind them together

females_no_1$sex <- "Female"

females_no_1$sex <- as.factor(females_no_1$sex)
colnames(females_no_1)[c(1,9)] <- c("focal", "mate")
males_no_1$sex <- "Male"

males_no_1$sex <- as.factor(males_no_1$sex)
colnames(males_no_1)[c(1,9)] <- c("focal", "mate")
mating <- rbind(females_no_1, males_no_1)

calculate the number of mates per year

mating$no_mates_per_year <- mating$mate/mating$years

summarise the matings by sex and determine “h”, the average annual number of mates per female

sex_specific_mating_system <-
mating)>%



dplyr: :group_by(sex)%>%

dplyr: :summarise(mean_annual_no_mates = mean(no_mates_per_year),
var_annual_no_mates = var(no_mates_per_year),
median_annual_no_mates = median(no_mates_per_year),
sd_annual_no_mates = sd(no_mates_per_year))

# because the mating system is polyandrous, h must be less than 1,
# and therefore the inverse ts calculated
h <-
1/as.numeric(sex_specific_mating_system[which(sex_specific_mating_system$sex == "Female"), 2])

# display the h value (used in the mating function of the matriz model)
h
#> [1] 0.8224986

Figure 1: plot the sex-specific distributions of mating system

# spectifiy the color palette to use in plotting
cbPalette <- RColorBrewer: :brewer.pal(8, "Dark2")[c(2,1)]

# define the dodge level
pd <- position_dodge(0.1)

# draw the plot
Sex_specific_mating_plot <-
ggplot2: :ggplot() +
geom_jitter(aes(y = no_mates_per_year, x = sex, fill = sex, color = sex),
data = mating, width = 0.2, alpha = 0.4) +
geom_errorbar(data = sex_specific_mating_system,
aes(x = sex, y = mean_annual_no_mates,
ymin=mean_annual_no_mates-sd_annual_no_mates,
ymax=mean_annual_no_mates+sd_annual_no_mates),
width=.1, position=pd, colour = "black") +
geom_point (data = sex_specific_mating_system,
aes(y = mean_annual_no_mates, x = sex, fill = sex),
shape = 21, colour = "black", position = pd, size = 4) +
theme_bw() +
theme (text = element_text(size = 16),
legend.position = "",
axis.title.x = element_blank(),
axis.text.x = element_text(size = 10),
axis.title.y = element_text(size = 12,
margin = margin(0, 15, 0, 0)),
axis.text.y = element_text(size = 10),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),

axis.ticks = element_line(size = 0.5, colour = "grey40"),
axis.ticks.length = unit(0.2, "cm"),
panel.border = element_rect(linetype = "solid", colour = "grey")) +

scale_fill_manual (values = cbPalette) +

scale_color_manual (values = cbPalette) +

ylab("Per capita annual number of mates (x 1 SD)") +

scale_y_continuous(limits = c(0, 2.1))
Sex_specific_mating_plot
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statistically test the sex-difference in the per capita annual number of mates by using a non-parametric
Mann-Whitney-Wilcoxon Test.

wilcox.test(no_mates_per_year ~ sex, data = mating)

#>

#> Wilcoxzon rank sum test with continuity correction

#>

#> data: mno_mates_per_year by sex

#> W = 6533, p-value = 2.994e-06

#> alternative hypothesis: true location shift is nmot equal to O

Sex-specific fecundity

The objective here was to determine the average per capita annual fecundity for females. This vital rate was
then incorporated into the one-sex matrix model (see section on the two-sex vs one-sex model comparison).

Step one: wrangle the data

Extract the female column from the breeding data, add a sex column, extract the male colum, add a sex
column, then stack these two dataframes.

Sex <- rep("Female", nrow(breeding_data))
Ring <- breeding_data$female



females <- data.frame(Ring, Sex)

Sex <- rep("Male", nrow(breeding_data))
Ring <- breeding_data$male

males <- data.frame(Ring, Sex)
Individuals <- rbind(males, females)

replicate each row by 2 then cbind the stacked dataframe from the previous step

reproduction_df <- cbind(breeding_datal[rep(row.names(breeding_data), 2),
c("no_chicks", "clutch_size", "brood_ID", "year")],
Individuals)

change the order of the sex levels, so that females are first (for the plot)

reproduction_df$Sex <- factor(reproduction_df$Sex, levels = c("Female", "Male"))

subset the data to remove entries that have a NA in the Ring column

reproduction_df <- reproduction_df[!is.na(reproduction_df$Ring),]

subset the data to remove entries that have a NA in the no-chicks column

reproduction_df <- reproduction_df[!is.na(reproduction_df$no_chicks),]

group data according to Year, Sex, then Ring
reproduction_df <- dplyr::group_by(reproduction_df, year, Sex, Ring)

sum the total chicks produced per bird each year

reproduction_df_sum <-
dplyr: :ungroup(dplyr: :summarise (reproduction_df,
total_chicks_p_year = sum(as.numeric(no_chicks))))

Step two: calculate fecundity

calculate avg total chicks produced per bird in each year

fecundity_annual_summary <-
Rmisc: :summarySE(reproduction_df_sum, measurevar = "total_chicks_p_year",
groupvars = c("Sex", "year"))

group data according to Sex then Ring

reproduction_df_sum <- dplyr::group_by(reproduction_df_sum, Sex, Ring)

calculate avg total chicks produced per bird each year
reproduction_df_sum_avg <-
dplyr: :ungroup (dplyr: :summarise(reproduction_df_sum,
avg_chicks_p_year = mean(as.numeric(total_chicks_p_year))))

summarize the avg annual no_ chicks by sex

fecundity_sex_summary <-
Rmisc: :summarySE(fecundity_annual_summary,
measurevar = "total_chicks_p_year", groupvars = c("Sex"))

Assign the value of female per capita annual fecundity to a constant that will be included in the one-sex
matrix assessed later



RF <- fecundity_sex_summary[1,3]
RF
#> [1] 2.03688

Hatching sex ratio

The hatching sex ratio represents “rho” in the matrix model and is calculated from broods that met two
criteria: 1) the brood size was the modal clutch size (3 in the case of snowy plovers), and 2) chicks were
captured and sampled on the day of hatching. These criteria made sure to control for post-hatch brood
mixing.

Step one: wrangle the data

Subset the chick mark-recapture data so that only chicks captured on the day of hatch are included. In this
dataframe, the “ch” column refers to the capture history of an individual on each day of its life as a chick.

Thus, if the first character of the “ch” string is a 1, it was captured on the day of hatch and is included in
the hatch sex ratio dataset.

caught_at_hatch <- chick[which(substring(chick$ch, 1, 1) == "1"),]

sum the number of chicks that are included for each hatch ID

brood_ID_count <-
caught_at_hatch %>%
dplyr: : count (brood_ID)

join this data to the subset capture data

caught_at_hatch <- dplyr::left_join(caught_at_hatch, brood_ID_count, by = "brood_ID")

subset these data so that clutch size equals the number of chicks sampled from each nest

HSR_df <- caught_at_hatch[which(caught_at_hatch$clutch_size == caught_at_hatch$n),]

make new columns “Male” and “Female” that have 1 or 0 to describe the sex of the chick

HSR_df$male <- ifelse(HSR_df$sex == "M", 1, 0)
HSR_df$female <- ifelse(HSR_df$sex == "F", 1, 0)

define hatch ID as a factor
HSR_df$brood_ID <- as.factor (HSR_df$brood_ID)

Step two: mixed effects linear regression

Brood ID is used as a random effect to control for the non-independence of siblings

HSR_model <- 1me4::glmer(cbind(male, female) ~ (1|brood_ID),
data = HSR_df, family = binomial)

check out the model results. P = 0.588, therefore hatching sex ratio doesn’t deviate from parity

summary (HSR_model)

#> Generaltized linear mized model fit by mazimum likelihood (Laplace
#>  Approzimation) [glmerMod]

#> Famtly: binomial ( logit )

#> Formula: cbind(male, female) ~ (1 | brood_ID)

#> Data: HSR_df



#>

#> AIC BIC logLik deviance df.resid
#> 475.0 482.7 -235.5 471.0 338
#>

#> Scaled residuals:

#> Min 1Q Median 30Q Mazx

#> -0.971 -0.971 -0.971 1.030 1.030

#>

#> Random effects:

#> Groups  Name Variance Std.Dev.

#> brood_ID (Intercept) O 0

#> Number of obs: 340, groups: brood_ID, 116
#>

#> Fized effects:

#> Estimate Std. Error z value Pr(>/z/)

#> (Intercept) -0.05884 0.10851 -0.542 0.588

calculate what the average hatching sex ratio is summarize the data so that each row is a nest instead of an
individual
HSR_df_summary <-
HSR_df %>%
dplyr: :group_by(brood_ID) ¥>%
dplyr: :summarise(no_males = sum(male),
hatch_date_season = min(day_of_season),
clutch_size = mean(n),
year = first(year))

calculate the proportion of the brood that was male

HSR_df _summary$prop_male <- HSR_df_summary$no_males/HSR_df_summary$clutch_size

calculate the average hatching sex ratio across all nests and assign the result to a constant “HSR” to be used
as rho in the matrix model

HSR <- mean(HSR_df_summary$prop_male)
HSR
#> [1] 0.4856322

calculate the 95% confidence interval of the hatching sex ratio

HSR_95CI <- c(mean(HSR_df_summary$prop_male)-
((sd(HSR_df _summary$prop_male)/
sqrt (length (HSR_df _summary$prop_male)))*1.96),
mean (HSR_df _summary$prop_male)+
((sd(HSR_df _summary$prop_male)/
sqrt (length (HSR_df_summary$prop_male)))*1.96))

Bootstrapping proceedure of stage- and sex specific survival

Specify where RMark should look on your computer for Program MARK. This may vary based on your
operating system (e.g., Windows, Linux, Mac OS X, etc.). This website provides a nice workflow for installing
Program MARK and linking it to your R interface based on which operating system you have.


http://www.phidot.org/software/mark/rmark/

MarkPath <- "/usr/local/bin/mark"
MarkViewer <- "nano"

Step one: Assign functions

The following two functions are needed to setup the projection matrix and estimate ASR. Load these before
implementing the bootstrap simulation.

plover__matrix() builds the two-sex Lefkovitch matrix using the vital rates specified in the demographic__rates
object.

plover_matrix <-
function(demographic_rates, two_sex = TRUE){
if (two_sex){
# Define plover life-stages of the Ceuta snowy plover matrixz model

stages <- c("F_1st_yr", "F_Adt", "M_1st_yr", "M_Adt")
# Build the 4x4 matriz
result <-

matrix(c(
# top row of matriz
0, NA, O, NA,
# second row of matriz
(demographic_rates$F_Chk_survl*demographic_rates$F_Juv_survl),
demographic_rates$F_Adt_survl,

0, 0,

# third row of matriz
0, NA, O, NA,

# fourth row of matriz
0, 0,

(demographic_rates$M_Chk_survl*demographic_rates$M_Juv_survl),
demographic_rates$M_Adt_survl),

nrow = length(stages), byrow = TRUE,

dimnames = list(stages, stages))

}
elseq{
# Define plover life-stages of the Ceuta snowy plover matrixz model
stages <- c("ist_yr", "Adt")
# Build the 4x4 matriz
result <-
matrix(c(
# top row of matriz
0, RF,
# second rTow of matriz
(demographic_rates$Chk_survl*demographic_rates$Juv_survl),
demographic_rates$Adt_survl),
nrow = length(stages), byrow = TRUE,
dimnames = list(stages, stages))
}
result

3

matrix__ ASR() calculates the ASR of the population based on the two-sex two-stage projection matrix
built by the plover_matriz() function. Arguments in the function include: A is an two sex x by x projection
matrix n is an x lengthed vector representing starting stage distribution (the default is a vector with 10
individuals in each stage)



matrix_ASR <-
function(M, n = rep(10, nrow(M)), h = 1, k = 3,
iterations = 1000, HSR = 0.5, plot = FALSE){
# Number of stages in matric
x <- length(n)
# Number of time steps to simulate
t <- iterations
# an empty t by = matrixz to store the stage distributions
stage <- matrix(numeric(x * t), nrow = Xx)
# an empty t vector to store the population sizes
pop <- numeric(t)
# for loop that goes through each of t time steps
for (i in 1:t) {
# stage distribution at time t
stage[,i] <- n
# population size at time t
popli]l <- sum(n)
# number of male adults at time t
M2 <- stagel4, il
# number of female adults at time t
F2 <- stage[2, il
# Female freq-dep fecundity of Female chicks
M[1,x/2] <= (k*M2)/(M2+(F2*h) ) *HSR
# Female freq-dep fecundity of Male chicks
M[(x/4)*3,x/2] <- (k*M2)/(M2+(F2%h))*HSR
# Male freq—dep fecundity of Female chicks
M[1,x] <= (k*F2)/(M2+(F2xh))*HSR
# Male freq-dep fecundity of Male chicks
M[(x/4)*3,x] <= (k*F2)/(M2+(F2%h))*HSR
# define the new n (t.e., new stage distribution at time t)
n <- M %*% n
# define rownames of stage matriz
rownames (stage) <- rownames (M)
# define colnames of stage matriz
colnames(stage) <- 0:(t - 1)
# calculate the proportional stable stage distribution
stage <- apply(stage, 2, function(x) x/sum(x))
# define stable stage as the last stage
stable.stage <- stagel, t]
}
# calc ASR as the proportion of the adult stable stage class that is male
ASR <- stable.stage[x]/(stable.stage[x/2] + stable.stage([x])

if (plot)
{
# plot distrubution to assure that it %s not chaotic
matplot (rownames (t(stage)), t(stage), type='l', lwd=2, las=1)
}
# make a list of results
pop.proj <- list(ASR = ASR,
lambda = pop[t]/poplt - 11,
stable.stage = stable.stage,
stage.vectors = stage,
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SSD_M2 = stable.stage[4],
SSD_F2 = stable.stage[2])
# print the list as output to the function

POp.proj

3

Step two: running the bootstrap
Each iteration will do the following computational steps:

A) Load the following function bootstrap__data() to randomly sample with replacement from the chick
and juvenile adult datasets, while making sure that if an individual existing in both datasets was
sampled from the chick data it was also sampled in the juvenile adult data. Each bootstrapped sample
has the same length as the original data.

bootstrap_data <- function(juvenile_adult, chick) {

# sample a new chick mark-recapture dataset the same size as the original,
# with replacement
chick_boot <- chick[sample(l:nrow(chick),

size = nrow(chick),

replace = TRUE), ]

# determine 1f there are any individuals in the new chick data that are in the
# adult data
present <- juvenile_adult$bird_ID %in’ chick_boot$bird_ID

# extract these individuals from the adult data
juvenile_adult_bootl <- juvenile_adult[present, ]

# determine the left over adults
spare_juvenile_adult <- juvenile_adult[!present, ]

# randomly sample from these left over adults
juvenile_adult_boot2 <-
spare_juvenile_adult [sample(l:nrow(spare_juvenile_adult),
size = nrow(juvenile_adult) -
nrow(juvenile_adult_bootl),
replace = TRUE), 1]

# bind these two adult samples together
juvenile_adult_boot <- rbind(juvenile_adult_bootl, juvenile_adult_boot2)

# make a list of these two datasets, which will be used in the next function
out <- list(chick_boot = chick_boot, juvenile_adult_boot = juvenile_adult_boot)

B) The next function, bootstrap_ survival__ASR(), runs the survival analyses and estimates the ASR
of the bootstrapped sample created from bootstrap__data(). In the function, plover boot list is
the output list from bootstrap__data() and num_ boot is the bootstrap number in the loop (leave
unspecified).

bootstrap_survival_ASR <- function(plover_boot_list, num_boot) {

# specify the bootstrapped data samples (from the previous function)
chick <- plover_boot_list[["chick_boot"]]
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juvenile_adult <- plover_boot_list[["juvenile_adult_boot"]]

# remove ring column
juvenile_adult <- juvenile_adult[,-1]
chick <- chick[,-1]

# Create processed RMark data formatted as Cormack-Jolly_Seber with 2 groups

# (sex and stage initally ringed), starting at year 2006, two stage groups

# (first-years and adults) in which the first-year stage only lasts for

# one year.

juvenile_adult.proc <- RMark::process.data(juvenile_adult, model = "CJS",
groups = c("sex", "stage"),
begin.time = 2006, age.var = 2,
initial.age = c(1, 0))

# Create processed RMARK data format as Cormack-Jolly_Seber with 3 groups
# (sex, year, and brood ID).
chick.proc <- RMark::process.data(chick, model = "CJS",

groups = c("sex", "year", "brood_ID"))

# Create the design matrixz from the processed mark-recapture datasets
juvenile_adult.ddl <- RMark::make.design.data(juvenile_adult.proc)
chick.ddl <- RMark::make.design.data(chick.proc)

# adds first-year / adult stage field to design data in column "Age"
juvenile_adult.ddl <- RMark::add.design.data(data = juvenile_adult.proc,
ddl = juvenile_adult.ddl,

parameter = "Phi",
type = "age",
bins = c(0, 1, 7), right = FALSE,

name = "age", replace = TRUE)

# create a dummy field in the design matriz called marked.as.adult

# which is "0" for the group initally ringed as chicks and "1" for the group

# marked as adults.

juvenile_adult.dd1$Phi$marked.as.adult = O
juvenile_adult.dd1$Phi$marked.as.adult[juvenile_adult.dd1$Phi$initial.age.class=="A"]=1
juvenile_adult.ddl$p$marked.as.adult = 0
juvenile_adult.ddl$p$marked.as.adult[juvenile_adult.ddl$p$initial.age.class=="A"]=1

# check parameter matrices to see if groups were binned correctly

# (uncomment the next three lines to assess)

# PIMS(mark(juvenile_adult.proc, juvenile_adult.ddl,

# model.parameters = list(Phi = list(formula = ~ stage + sez)),
# output = F), "Phi")

# Create quadratic time variable so that it can be tested for temporal wvariation
# chick survival (i.e. non-linear relationship between daily chick survival and age)
time <- c(0:(chick.proc$nocc[1] - 1))
quadratic <- time”2
quad_time <- data.frame(time, quadratic)
chick.dd1l$p <-
RMark: :merge_design.covariates(chick.dd1$Phi,
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quad_time, bygroup = FALSE, bytime = TRUE)
chick.dd1$Phi <-
RMark: :merge_design.covariates(chick.dd1$Phi,

quad_time, bygroup = FALSE, bytime

TRUE)

# create the function that specifies the candidate models of juventile and adult
# resight probability
juvenile_adult_survival = function()
{
# sex- and stage-specific survival:
Phi.agexsex = list(formula = ~ stage * sex)

Models exploring variation in encounter probability
constant:

.dot = list(formula
sex—dependent:

~ 1)

.sex = list(formula ~ sex)

stage-dependent:

.stage = list(formula = ~ stage)

factorial wvariation across year:

.Time = list(formula = ~ Time)

interaction between sex and factorial year:
.sexxTime = list(formula = ~ sex * Time)

interaction between stage and factorial year:
.agexTime = list(formula = ~ stage * Time)
interaction between stage and sex:

.agexsex = list(formula = ~ sex * stage)

additive effects of sex and factorial year:
.sex_Time = list(formula = ~ sex + Time)

additive effects of stage and factorial year:
.age_Time = list(formula = ~ stage + Time)

additive effects of stage and sex:

.age_sex = list(formula = ~ sex + stage)

additive effects of sex, stage, factorial year:
.Time_age_sex = list(formula = ~ sex + stage + Time)
additive effect of year and interaction between stage and sex:
.Time_age_x_sex = list(formula = ~ sex * stage + Time)

O %0 %0 ®% 'O %0 #%'T %OV #'TV #'T %'V #'TV #'T #*k #®

# create a list of candidate models for all the a models above that begin with
# either "Phi." or "p."
cml <- RMark::create.model.list("CJS")

# spectfy the data, design matriz, delete unneeded output files, and
# run the models in Program MARK
model.list <- RMark::mark.wrapper(cml, data = juvenile_adult.proc,
ddl = juvenile_adult.ddl, delete = TRUE)

# output the model list and sotre the results
return(model.list)

# Run the models on the bootstrapped data
juvenile_adult_survival_run <-
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juvenile_adult_survival()

# Extract the AIC model table from the model output
AIC_table_juvenile_adult <-
juvenile_adult_survival_run$model.table

# Find the model number for the first ranked model of the AIC table
model_juvenile_adult_num <-
as.numeric(rownames (juvenile_adult_survival_run$model.table[1,]))

# extract and format survival rates from juvenile and adult model output
juvenile_adult_reals <-
juvenile_adult_survival_run[[model_juvenile_adult_num]]$results$real

# format the output to tidy up the sex— and stage-specific effects
Groups <- data.frame(str_split_fixed(rownames(juvenile_adult_reals), " ", n = 5))
juvenile_adult_reals <- cbind(Groups, juvenile_adult_reals)
juvenile_adult_reals <-
juvenile_adult_reals[which(juvenile_adult_reals$X1 == "Phi"),]
juvenile_adult_reals$stage <-
unlist(str_extract_all(juvenile_adult_reals$X2,"[AJ]"))
juvenile_adult_reals$stage <-
as.factor(ifelse(juvenile_adult_reals$stage == "A","Adult","juvenile"))
juvenile_adult_reals$sex <-
unlist(str_extract_all(juvenile_adult_reals$X2," [FM]"))
juvenile_adult_reals$sex <-

as.factor(ifelse(juvenile_adult_reals$sex == "F","Female","Male"))
juvenile_adult_reals$sex_stage <-

paste(juvenile_adult_reals$sex, juvenile_adult_reals$stage,sep = "_")
juvenile_adult_survival_real <-

juvenile_adult_reals[,c("sex_stage", "estimate")]

row.names (juvenile_adult_survival_real) <- NULL

# Do the same for chicks. create the function that specifies the candidate models
# of chick resight probability
chick_survival = function()

{
# sex- and quadratic age-specific survival:
Phi.quadratic.x.sex = list(formula = ~ sex * quadratic)
# Models exploring wariation in encounter probability
# constant:
p.dot = list(formula = ~ 1)
# quadratic across age
p.-quadratic = list(formula = ~ quadratic)
# annual variation
p.year = list(formula = ~ year)
# sex-spectific
p-sex = list(formula = ~ sex)
# interaction between year and quadratic age
p.year.x.quadratic = list(formula = ~ quadratic * year)
# interaction between year and quadratic age
p.sex.x.quadratic = list(formula = ~ sex * quadratic)
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# additive effects of sex and linear age
p.sex.quadratic = list(formula = ~ sex + quadratic)
# additive effects of year and quadratic age

p.year.quadratic = list(formula = ~ quadratic + year)
# additive effects of year, sex, and quadratic age
p.year.quadratic.Sex = list(formula = ~ sex + quadratic + year)

# additive effect of year and interaction between sex and quadratic age
p.year.quadratic.x.Sex = list(formula = ~ sex * quadratic + year)

# create a list of candidate models for all the a models above that begin with
# either "Phi." or "p."
cml <- RMark::create.model.list("CJS")

# spectify the data, design matriz, delete unneeded output files, and
# run the models in Program MARK
model.list <- RMark::mark.wrapper(cml, data = chick.proc,

ddl = chick.ddl, delete = TRUE)

# output the model list and sotre the results
return(model.list)
# Run the models on the bootstrapped data

chick_survival_run <- chick_survival()

# Extract the AIC model table from the model output
AIC_table_chick <- chick_survival_run$model.table

# Find the model number for the first ranked model of the AIC table
model_chick_num <- as.numeric(rownames(chick_survival_run$model.table[1,]))

# extract real parameter estimates from top models
chick_reals <- chick_survival run[[model chick_num]]$results$real

# format the output to tidy up the sex— and age-specific effects

Groups <- data.frame(str_split_fixed(rownames(chick_reals), " ", n = 5))
chick_reals <- cbind(Groups, chick_reals)

chick_reals <- chick_reals[which(chick_reals$X1 == "Phi"),]

chick_reals$sex <- unlist(str_extract_all(chick_reals$X2,"[FM]"))
chick_reals$sex <- as.factor(ifelse(chick_reals$sex == "F","Female","Male"))

# transform the daily chick survival (DCS) to apparent hatching success
# by calculating the product of all DCS estimates:
plover_Survival_to_Fledge F <-
prod(chick_reals[which(chick_reals$sex == "Female"),
c("estimate")][c(1:26)])
plover_Survival_to_Fledge M <-
prod(chick_reals[which(chick_reals$sex == "Male"),
c("estimate")] [c(1:26)])

# tidy up the output and put it in a dataframe.

estimate <- c(plover_Survival_to_Fledge_F, plover_Survival_to_Fledge_M)
sex <- c("Female", "Male")
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stage <- c("Chick", "Chick")
sex_stage <- paste(sex, stage, sep = "_")
chick_survival_real <- data.frame(sex_stage, estimate)

# Bind the juvenile and adult dataframe with the chicks
survival_rates <- rbind(juvenile_adult_survival_real, chick_survival_real)

# Create a list of demographic rates from the survival analyses above
demographic_rates <- 1list(F_Chk_survl = survival_rates[5,2],
F_Juv_survl = survival_rates[3,2],
F_Adt_survl = survival_rates[1,2],
M_Chk_survl = survival_rates[6,2],
M_Juv_survl = survival_rates[4,2],
M_Adt_survl = survival_rates[2,2],
# Define hatching sex ratio
HSR = HSR,
# Define the mating system (h), and clutch size (k)
h = h,
k = 3)

# Build matriz based on rates specified in the list above
demographic_matrix <- plover_matrix(demographic_rates)

# Determine the ASR at the stable stage distribution
ASR_SSD <- matrix_ASR(M = demographic_matrix, h = demographic_rates$h,
HSR = demographic_rates$HSR, iterations = 1000)

# Extract ASR
ASR_estimate <- ASR_SSD$ASR

# make a list of all the results from this iteration
bootstrap_results_list <-
list (AIC_table_chick,
AIC_table_juvenile_adult,
survival_rates,
ASR_estimate)

C) Create a function to run the bootstrap_ data() and bootstrap_ survival__ASR() functions in
sequence.

run_bootstrap_survival_ ASR <- function(num_boot, juvenile_adult, chick)

{
# run the sampling function and specify the datasets
bootstrap_data_list <- bootstrap_data(juvenile_adult, chick)

# run the survival analysis and ASR deduction on the sampled data
result <- bootstrap_survival_ASR(bootstrap_data_list, num_boot)

D) Specify the number of iterations to run in the bootstrap (1000 was used in our analysis).
niter <- 1000

E) start the bootstrap (takes approx. 130 hours on an Intel XEON E5v2 series sever with 40 threads)
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# uncomment this to run the bootstrap. To bypass this, load the bootstrap output datasets
# below to continue analysis

# survival_ASR_bootstrap_result <-

#

sapply(1:niter, run_bootstrap_survival_ASR, juvenile_adult, chick)

F) Extract data from the bootstrap output (uncomment these sections if you ran the bootstrap)

AIC tables of chick survival for each interation

# AIC table_chick_boot <-
# do.call(rbind, lapply(seq(from = 1, to = niter * 4, by = 4),

#

function(z) survival_ASR_bootstrap_result/[[z]]))

# num_mods <- nrow(AIC_table_chick_boot)/niter
# AIC table_chick_boot$iter <- rep(l:niter, each = num_mods)

AIC tables of juvenile and adult survival for each interation

# AIC_table_juvenile_adult_boot <-
# do.call(rbind, lapply(seq(from = 2, to = niter * 4, by = 4),

#

function(z) survival_ ASR_bootstrap_result[[z]]))

# num_mods <- nrow(AIC table_juvenile_adult_boot)/niter
# AIC table_juvenile_adult_boot$iter <- rep(1l:niter, each = num_mods)

Survival rates for each iteration

# survival_rates_boot <-
# do.call(rbind, lapply(seq(from = 3, to = niter * 4, by = 4),

#

function(z) survival_ ASR_bootstrap_result[[z]]))

# survival_rates_boot$iter <- rep(1l:niter, each = 6)

ASR estimate for each iteration

# ASR_boot <-
# sapply(seq(from = 4, to = niter * 4, by = 4),

#

function(z) survival_ASR_bootstrap_result[[xz]])

# ASR_boot <- data.frame(ASR_boot = unname(ASR_boot), iter = 1:niter)

To save your time with re-running the bootstrap, here are the four datasets produced by the bootstrap:

o output/bootstrap/AIC_ table_ chick boot_ out.txt contains the bootstrap output for model

selection of chick survival based on the mark-recapture analysis run in Program MARK. Each row
is a model fitted via maximum likelihood to the bootstrapped data sample of each iteration (iter).
Phi describes the model structure for fitting daily survival. p describes the model structure for fitting
daily encounter probability. npar reveals the number of parameters used in a given model. AICc is
the Akaike Information Criteria statistic corrected for small sample size. DeltaAICc is the difference
in AICc between a given model and the best fit model of a given iteration. weight describes the AIC
weight of a given model. Deviance describes the deviance of a given model.

output/bootstrap/AIC__table_ juvenile__adult__boot__out.txt contains the bootstrap output
for model selection of juvenile and adult survival based on the mark-recapture analysis run in Program
MARK. Each row is a model fitted via maximum likelihood to the bootstrapped data sample of each
iteration (iter). Phi describes the model structure for fitting annual survival. p describes the model
structure for fitting annual encounter probability. npar reveals the number of parameters used in a given
model. AICc is the Akaike Information Criteria statistic corrected for small sample size. DeltaAICc
is the difference in AICc between a given model and the best fit model of a given iteration. weight
describes the AIC weight of a given model. Deviance describes the deviance of a given model.
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« output/bootstrap/ASR__boot__out.txt contains the adult sex ratio estimates (ASR__boot) of each
iteration of the bootstrap procedure. Each row represents an iteration (iter).

o output/bootstrap/survival_rates_boot_ out.txt contains the sex- and stage-specific survival
estimates (estimate) of each iteration (iter) in the bootstrap procedure. Each row represents a given
sex and stage (sex_stage) in a given iteration.

setwd ("~/Dropbox/Luke/R_projects/Ceuta_ASR_Matrix_Modeling")

chick_AIC_tables <-
read.table("output/bootstrap/AIC_table_chick_boot_out.txt", header = TRUE)

juv_ad_AIC_tables <-
read.table("output/bootstrap/AIC_table_juvenile_adult_boot_out.txt", header = TRUE)

survival_rates_boot <-
read.table("output/bootstrap/survival_rates_boot_out.txt", header = TRUE)

ASR_boot <-
read.table("output/bootstrap/ASR_boot_out.txt", header = TRUE)

Visualizations of bootstrap results

Sex-biases in survial across chicks, juveniles, and adults

We visualized sex-bias in stage-specific survival rates with violin plots. These plots are useful for illustrating
the spread of the bootstrap distribution. We have also added the inter-quartile ranges as horizontal bars within
the violins. Before plotting, the sex-bias at each stage for each bootstrap iteration needs to be calculated.
This is done with the sex_ diff__surv() function and specifying the output list from the bootstrap above.

sex_diff_survival <- function(survival_rates_boot) {

# make an empty datarame to store the results

sex_diff_surv_output <- data.frame(Adult = numeric(niter),
Juvenile = numeric(niter),
Chick = numeric(mniter))

# for loop to go through each iteration and calculate the differece between
# female and male survival rates for each stage.
for(i in 1:niter){

Adult <-
survival_rates_boot[which(survival_rates_boot$iter == i), 2] [2] -
survival_rates_boot[which(survival_rates_boot$iter == i), 2][1]
Juvenile <-
survival_rates_boot[which(survival_rates_boot$iter == i), 2][4] -
survival_rates_boot [which(survival_rates_boot$iter == i), 2] [3]
Chick <-
survival_rates_boot[which(survival_rates_boot$iter == i), 2] [6] -
survival_rates_boot[which(survival_rates_boot$iter == i), 2][5]

sex_diff_surv_output[i, 1] <- Adult
sex_diff_surv_output[i, 2] <- Juvenile
sex_diff_surv_output[i, 3] <- Chick
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# restructure the output and lable columns
sex_diff_surv_output <- reshape2::melt(data = sex_diff_surv_output)
colnames(sex_diff_surv_output) <- c("stage", "difference")

# return the output
sex_diff_surv_output

}

run the function on the bootstrap list from above

sex_diff_survival_output <- sex_diff_survival(survival_rates_boot)

calculate some summary statistics

sex_diff_survival_summary <-
sex_diff_survival_output %>%
dplyr::group_by(stage) %>%
dplyr: :summarise(avg = mean(difference),
median = median(difference),
var = var(difference))

specify custom color palette to distingush first-year stages (i.e. chicks and juveniles) from adults

cbPalette <- c("#A6A6A6", "#D9D9D9", "#D9D9D9")

reorder the levels of the stage factors

sex_diff_survival_output$stage <-
factor(sex_diff_survival_output$stage, levels = c("Adult", "Juvenile", "Chick"))

Figure 2a: plot the sex-biases in survival across the three stages

Background <-
ggplot(aes(y = difference, x = stage, fill = stage), data = sex_diff_survival_output) +
coord_flip() +
theme_bw() +
annotate("rect", xmin=-Inf, xmax=Inf, ymin=-Inf, ymax=0, alpha=0.6,
fill=brewer.pal(8, "Dark2")[c(2)]) +
annotate("rect", xmin=-Inf, xmax=Inf, ymin=0, ymax=Inf, alpha=0.6,
fill=brewer.pal(8, "Dark2")[c(1)]) +
annotate("text", x = 2, y = -0.25,
label = c("female"), size = 5,

vjust = c(0.5), hjust = c(0.5), angle = 90) +
annotate("text", x = 2, y = 0.25,
label = c("male"), size = 5,
vjust = c(0.5), hjust = c(0.5), angle = 270) +
theme (text = element_text(color = "white"),
legend.position = "none",
axis.title.x = element_text(size=12, margin = margin(10, 0, 0, 0)),
axis.text.x = element_text(size=10, margin = margin(5, O, O, 0), color = "white"),

axis.title.y = element_text(size=12, margin = margin(0, 15, 0, 0)),
axis.text.y = element_text(size=10, angle = 0, hjust = 1,

margin = margin(0, 5, 0, 0), color = "white"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.ticks.y = element_blank(),
axis.ticks.x = element_line(size = 0.5, colour = "white"),
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"Cm") ,

axis.ticks.length = unit (0.2,
panel.border = element_blank(),
plot.margin = unit(c(1,0.5,0.5,0.5), "cm"),
panel.spacing = unit(0.75, "lines"),
strip.background = element_blank(),
strip.text = element_blank()) +
scale_x_continuous(limits=c(0,4) ,breaks=c(0,1,2), labels=c("Chick", "Juvenile", "Adult")) +
scale_y_continuous(limits=c(-0.25,0.25)) +
xlab("Life stage") +
ylab("Sex bias in apparent survival (phi)")

Bootstrap_sex_diff_VR_plot <-
ggplot(aes(y = difference, x = stage, fill = stage), data = sex_diff_survival_output) +
coord_flip() +
theme_bw() +
geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) +

theme (legend.position = "none",
panel.background = element_rect(fill = "transparent",colour = NA),
plot.background = element_rect(fill = "transparent",colour = NA),
axis.title.x = element_text(size=12, margin = margin(10, 0, 0, 0)),
axis.text.x = element_text(size=10, margin = margin(5, 0, 0, 0)),
axis.title.y = element_text(size=12, margin = margin(0, 15, 0, 0)),
axis.text.y = element_text(size=10, angle = 0, hjust = 1,

margin = margin(0, 5, 0, 0)),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),

axis.ticks.y = element_line(size = 0.5, colour = "grey40"),
axis.ticks.length = unit(0.2, "cm"),
axis.ticks.x = element_line(size = 0.5, colour = "grey40"),

panel.border = element_rect(linetype = "solid", colour = '"grey"),
plot.margin = unit(c(1,0.5,0.5,0.5), "cm"),
panel.spacing = unit(0.75, "lines"),
strip.background = element_blank(),
strip.text = element_blank()) +
scale_fill_manual(values = cbPalette) +
scale_y_continuous(limits=c(-0.25,0.25)) +
xlab("Life stage") +
ylab("Sex bias in apparent survival (phi)")

grid.newpage ()
pushViewport( viewport( layout = grid.layout( 1 , 1 , widths = unit( 1 , "npc" ) ) ) )
print( Background + theme(legend.position="none") ,
vp = viewport( layout.pos.row = 1 , layout.pos.col =1 ) )
print( Bootstrap_sex_diff_ VR_plot + theme(legend.position='"none") |,
vp = viewport( layout.pos.row = 1 , layout.pos.col =1 ) )
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Adult sex ratio distribution

calculate the confidence interval, mean, and median of the ASR bootstraps

CI <- 0.95
ASR_boot_95CI <-
stats::quantile (ASR_boot$ASR_boot, c((1 - CI)/2, 1 - (1 - CI)/2), na.rm = TRUE)
ASR_boot_mean <- mean(ASR_boot$ASR_boot)
ASR_boot_median <- median(ASR_boot$ASR_boot)

consolidate the results

ASR_boot_summary <- as.data.frame(cbind(ASR_boot_95CI[1], ASR_boot_95CI[2],
ASR_boot_mean, ASR_boot_median))

rownames (ASR_boot_summary) <- NULL

colnames (ASR_boot_summary) <- c("lcl", "ucl", "mean", "median")
ASR_boot_summary
#> lcl ucl mean median

#> 1 0.4600267 0.7846838 0.6322504 0.6351836

Figure 2b: We visualized the bootstrapped results of adult sex ratio with a histogram. The horizontal black
bar above the distribution illustrates the 95% confidence interval of the 1000 iterations.

ASR_bootstrap_histogram <-
ggplot2: :ggplot() +
annotate('"rect", xmin=-Inf, xmax=0.5, ymin=-Inf, ymax=Inf, alpha=0.6,
fill=brewer.pal(8, "Dark2")[c(2)]) +
annotate("rect", xmin=0.5, xmax=Inf, ymin=-Inf, ymax=Inf, alpha=0.6,
fill=brewer.pal(8, "Dark2")[c(1)]) +
annotate("text", x = c(-Inf,Inf), y = c(75, 95),
label = c("female", "male"), size = 5,
vjust = ¢(1.5,1.5), hjust = c(0,0), angle = c(90, 270)) +
geom_histogram(binwidth = 0.02, data = ASR_boot, aes(x = ASR_boot)) +
geom_errorbarh(data = ASR_boot_summary,
aes(y = 120, x = 1lcl, zmin = 1lcl, xmax = ucl),
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color = "black", size = 0.8, linetype = "solid") +
theme_bw() +
theme (legend.position = c(0, 1),
legend.justification = c(0, 1),
legend.text=element_text(size=11),
legend.title=element_blank(),
legend.key.height=unit(0.8,"line"),
legend.key.width=unit(0.8,"line"),
legend.background = element_rect(fill=NA),
axis.title.x = element_text(size=12, margin = margin(10, 0, 0, 0)),
axis.text.x = element_text(size=10, margin = margin(5, 0, 0, 0)),
axis.title.y = element_text(size=12, margin = margin(0, 30, 0, 0)),
axis.text.y element_text(size=10, angle = O, hjust = 1,
margin = margin(0, 5, 0, 0), color = "black"),
axis.ticks.y = element_line(size = 0.5, colour = '"grey40"),
axis.ticks.x = element_line(size = 0.5, colour = "grey40"),
axis.ticks.length = unit(0.2, "cm"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_rect(linetype = "solid", colour = '"grey"),
plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm"),
strip.background = element_blank(),
strip.text = element_blank(),
panel.spacing = unit(0.75, "lines")) +
ylab("Frequency") +
xlab("Adult sex ratio (proportion male)") +
scale_x_continuous(limits = ¢(0.0, 1)) +
scale_y_continuous(limits = c(0, 125))
ASR_bootstrap_histogram
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AIC model selection summary (panels in Supporting Information Figure 2)

To illustrate the mark-recapture model selection going on during the bootstrap, we summarized AIC statistics
for each model included in the survival analysis and visualized with ranked boxplots (Figure S2)

First, wrangle the bootstrap AIC table output

# define the model number
chick_AIC_tables$model _number <- as.numeric(chick_AIC_tables$model)
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juv_ad_AIC_tables$model_number <- as.numeric(juv_ad_AIC_tables$model)

# summarize the average AIC stats for each candidate model across all 1000 iterations
chick_AIC_tables_summary <-
chick_AIC_tables %>%
dplyr: :group_by(model) %>%
dplyr: :summarise(avg_Delta = mean(DeltaAICc),
IQR_Delta = IQR(DeltaAICc),
avg_Weight = mean(weight),
IQR_Weight = IQR(weight))

juv_ad_AIC_tables_summary <-
juv_ad_AIC_tables %>%
dplyr: :group_by(model) %>%
dplyr: :summarise(avg_Delta = mean(DeltaAICc),
IQR_Delta = IQR(DeltaAICc),
avg_Weight = mean(weight),
IQR_Weight = IQR(weight))

# rank the output by delta AIC and determine model number
chick_AIC_tables_summary <- dplyr::arrange(chick_AIC_tables_summary, avg_Delta)
chick_AIC_tables_summary$model number <- as.numeric(chick_AIC_tables_summary$model)

juv_ad_AIC_tables_summary <- dplyr::arrange(juv_ad_AIC_tables_summary, avg_Delta)
juv_ad_AIC_tables_summary$model_number <- as.numeric(juv_ad_AIC_tables_summary$model)

# merge the two datasets for plotting
chick_AIC_tables <-
dplyr::left_join(chick_AIC_tables_summary, chick_AIC_tables, by = "model_number")

juv_ad_AIC_tables <-
dplyr::left_join(juv_ad_AIC_tables_summary, juv_ad_AIC_tables, by = "model_number")

# extract the model structure explaining resighting probability
chick_AIC_tables$p <-
factor(chick_AIC_tables$p,
levels = str_sub(as.character(chick_AIC_tables_summary$model),
start = 24, end = str_length(chick_AIC_tables_summary$model)-1))

juv_ad_AIC_tables$p <-
factor(juv_ad_AIC_tables$p,
levels = str_sub(as.character(juv_ad_AIC_tables_summary$model),
start = 18, end = str_length(juv_ad_AIC_tables_summary$model)-1))

plot the overall model ranks of the chick survival anlaysis based on Delta AIC

Bootstrap_Delta_AIC_plot_C <-
ggplot(aes(y = DeltaAICc, x = p), data = chick_AIC_tables) +
theme_bw() +
geom_boxplot(width = 0.3, fill = "grey70", outlier.size = 0.5) +

theme (legend.position = "none",
axis.title.x = element_blank(),
axis.text.x = element_blank(),

axis.title.y = element_text(size=12, margin = margin(0, 18, 0, 0)),
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axis.text.y = element_text(size=10),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),

axis.ticks.y = element_line(size = 0.5, colour = "grey40"),
axis.ticks.length = unit(0.2, "cm"),
axis.ticks.x = element_line(size = 0.5, colour = "grey40"),

plot.margin = unit(c(0.5,0.5,0,0.5), "cm"),
panel.spacing = unit(0.75, "lines"),
strip.background = element_blank(),
strip.text = element_blank(),
plot.title = element_text(hjust = 0.5)) +
scale_y_continuous(limits=c(0,50)) +
xlab("Model") +
ylab("Delta AIC") +
ggtitle("Chick resighting model selection")

plot the overall model ranks of the chick survival anlaysis based on AIC weight

Bootstrap_AIC_weight_plot_C <-
ggplot(aes(y = weight, x = p), data = chick_AIC_tables) +
theme_bw() +
geom_boxplot(width = 0.3, fill = "grey70", outlier.size = 0.5) +
theme (legend.position = "none",

element_blank(),

axis.title.x

axis.text.x = element_text(size=10, angle = 45, hjust = 1),
axis.title.y = element_text(size=12, margin = margin(0, 15, 0, 0)),
axis.text.y = element_text(size=10),

panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),

axis.ticks.y = element_line(size = 0.5, colour = "grey40"),
axis.ticks.length = unit(0.2, "cm"),
axis.ticks.x = element_line(size = 0.5, colour = "grey40"),

plot.margin = unit(c(0.5,0.5,0.5,0.3), "cm"),
panel.spacing = unit(0.75, "lines"),
strip.background = element_blank(),
strip.text = element_blank()) +
scale_y_continuous(limits=c(0,1)) +
xlab("Model") +
ylab("AIC weight") +
scale_x_discrete(labels = c("~year * quadratic" =
expression(paste("age""2," * year")),
"~year + quadratic + sex" =
expression(paste("sex + age""2," + year")),
"~year + quadratic * sex" =
expression(paste("sex * age""2," + year")),
"~year + quadratic" =
expression(paste("age"~2," + year")),
"~year" = "~year",
"~sex + quadratic" =
expression('"sex + age""2),
"~sex * quadratic" =
expression("sex * age""2),
"~quadratic" =
expression("age"~2),
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"ogex" = "~sex",
noqn = n,,1n))

grid.newpage ()

pushViewport (viewport(layout = grid.layout(5, 1)))

vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y)
print (Bootstrap_Delta_AIC_plot_C, vp = vplayout(1l:2, 1))

print (Bootstrap_AIC_weight_plot_C, vp = vplayout(3:5, 1))
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Chick resighting model selection
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plot the overall model ranks of the juvenile and adult survival anlaysis based on Delta AIC
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Bootstrap_Delta_AIC_plot_F_A <-
ggplot(aes(y = DeltaAICc, x = p), data = juv_ad_AIC_tables) +
theme_bw() +
geom_boxplot(width = 0.3, fill = "grey70", outlier.size = 0.5) +

theme (legend.position = "none",
axis.title.x = element_blank(),
axis.text.x = element_blank(),

axis.title.y = element_text(size=12, margin = margin(0, 18, 0, 0)),
axis.text.y element_text (size=10),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

axis.ticks.y = element_line(size = 0.5, colour = "grey40"),
axis.ticks.length = unit(0.2, "cm"),
axis.ticks.x = element_line(size = 0.5, colour = "grey40"),

plot.margin = unit(c(0.5,0.5,0,0.8), "cm"),
panel.spacing = unit(0.75, "lines"),
strip.background = element_blank(),
strip.text = element_blank(),
plot.title = element_text(hjust = 0.5)) +
scale_y_continuous(limits=c(0,50)) +
xlab("Model") +
ylab("Delta AIC") +
ggtitle("Juvenile and adult resighting model selection")

plot the overall model ranks of the juvenile and adult survival anlaysis based on AIC weight

Bootstrap_AIC_weight_plot_F_A <-
ggplot(aes(y = weight, x = p), data = juv_ad_AIC_tables) +
theme_bw() +
geom_boxplot(width = 0.3, fill = "grey70", outlier.size = 0.5) +
theme (legend.position = "none",
axis.title.x = element_blank(),
axis.text.x element_text(size=10, angle = 45, hjust = 1),
axis.title.y = element_text(size=12, margin = margin(0, 18, 0, 0)),
axis.text.y element_text(size=10),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),

axis.ticks.y = element_line(size = 0.5, colour = "grey40"),
axis.ticks.length = unit(0.2, "cm"),
axis.ticks.x = element_line(size = 0.5, colour = "grey40"),

plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm"),

panel.spacing = unit(0.75, "lines"),

strip.background = element_blank(),

strip.text = element_blank(),

plot.background = element_rect(fill = "transparent",colour = NA)) +
scale_y_continuous(limits=c(0,1)) +
xlab("Model") +
ylab("AIC weight") +

scale_x_discrete(labels = c("~Time + age * sex" = "~sex * stage + year",
"~Time + age + sex" = "~sex + stage + year",
"~sex + Time" = "~sex + year",
"~sex * Time" = "~sex * year",
"~age * Time" = "~stage * year",
"~Time" = "~year",
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"~age + Time" = "~stage + year",

"~age * sex" = "~sex * stage",
"~age + sex" = "~sex + stage",
ll,,sexvl = "”SeX",

"~age" = "~stage",

neqn = "”1"))

grid.newpage()

pushViewport (viewport (layout = grid.layout(5, 1)))

vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y)
print (Bootstrap_Delta_AIC_plot_F_A, vp = vplayout(1:2, 1))
print(Bootstrap_AIC_weight_plot_F_A, vp = vplayout(3:5, 1))
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Juvenile and adult resighting model selection
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Life table response experiment on ASR

Perturbation analyses provide important information about the relative effect that each component of a
matrix model has on the population-level response, in our case ASR. To assess how influential a sex bias
in parameters associated with each of the three life stages was on ASR dynamics, we employed a life-table
response experiment (LTRE). A LTRE decomposes the difference in response between two or more “treatments”
by weighting the difference in parameter values by the parameter’s contribution to the response (i.e. its
sensitivity), and summing over all parameters (Caswell 2001). Here, we compared the observed scenario, to a
hypothetical scenario whereby all female survival rates were set equal to the male rates and the hatching
sex ratio was set to 0.5. Thus, our LTRE identifies the drivers of ASR bias by decomposing the difference
between the ASR predicted by our model and an unbiased ASR (Veran & Beissinger 2009).

The following two functions need to be specified first:

sensitivity__analysis() determines the sensitivities of each parameter in the non-linear two-sex matrix
model. It does this by perturbing each parameter independently and simulating the matrix until the stable
stage is achieved and the ASR or lambda can be determined. After all perturbations have been tested, a
spline of the response vs. perturbated values is found and the tangent of this spline at the observed parameter
value is defined as a given parameter’s sensitivity.
sensitivity_analysis <-

function(vital_rates, matrix_str, h = 1, k = 3, HSR, niter = 1000, ASR, lambda){

# make a list of all parameters
vr <-
list (F_Chk_survl = vital_rates$F_Chk_survl,
F_Juv_survl = vital_rates$F_Juv_survl,
F_Adt_survl = vital_rates$F_Adt_survl,
M_Chk_survl = vital_rates$M_Chk_survl,
M_Juv_survl = vital_rates$M_Juv_survl,
M_Adt_survl = vital_rates$M_Adt_survl)

# number of stages in the matriz
no_stages <- sqrt(length(matrix_str))

# Define plover life-stages of the Ceuta snowy plover matriz model
stages <- c("F_1st_yr", "F_Adt", "M_1st_yr", "M_Adt")

# an empty t by T matriz
stage <- matrix(numeric(no_stages * niter), nrow = no_stages)

# an empty t vector to store the population sizes
pop <- numeric(niter)

# dataframe to store the perturbation results
ASR_pert_results <-
data.frame(parameter = c("F_Chk_survl", "F_Juv_survl", "F_Adt_survl",
"M_Chk_survl", "M_Juv_survl", "M_Adt_survl",
"h", "k", "HSR"),
sensitivities = numeric(9),
elasticities = numeric(9))

lambda_pert_results <-

data.frame(parameter = c("F_Chk_survl", "F_Juv_survl", "F_Adt_survl",
"M_Chk_survl", "M_Juv_survl", "M_Adt_survl",
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llhll llkll IIHSRII)

b b b
sensitivities = numeric(9),
elasticities = numeric(9))

# spectifiy how many survival rates there are
n <- length(vr)

# create wvectors of perturbations to test on parameters of the matrixz model

vr_nums <- seq(0, 1, 0.01) # proportional changes in survival and HSR (i.e., between 0 an 1)
h_nums <- seq(0, 2, 0.02) # proportional changes in h indexr (i.e., between 0 and 2)

k_nums <- seq(2, 4, 0.02) # proportional changes in k (i.e, between 2 and 4)

# create empty dataframes to store the perturbation results for ASR and lambda
vr_pert_ASR <- matrix(numeric(n * length(vr_nums)),
ncol = n, dimnames = list(vr_nums, names(vr)))
h_pert_ASR <- matrix(numeric(length(h_nums)),
ncol = 1, dimnames = list(h_nums, "h"))
k_pert_ASR <- matrix(numeric(length(k_nums)),
ncol = 1, dimnames = list(k_nums, "k"))
HSR_pert_ASR <- matrix(numeric(length(vr_nums)),
ncol = 1, dimnames = list(vr_nums, "HSR"))
vr_pert_lambda <- matrix(numeric(n * length(vr_nums)),
ncol = n, dimnames = list(vr_nums, names(vr)))
h_pert_lambda <- matrix(numeric(length(h_nums)),
ncol = 1, dimnames = list(h_nums, "h"))
k_pert_lambda <- matrix(numeric(length(k_nums)),
ncol = 1, dimnames = list(k_nums, "k"))
HSR_pert_lambda <- matrix(numeric(length(vr_nums)),
ncol = 1, dimnames = list(vr_nums, "HSR"))

# perturbation of wital rates survival rates
for (g in 1:n) # pick a column (i.e., a variable)
{
vr2 <- vr # reset the vital rates to the original
for (i in 1:length(vr_nums)) # pick a perturbation level
{
vr2[[gl] <- vr_nums[i] # specify the vital rate with the new perturbation level
A <- matrix(sapply(matrix_str, eval, vr2, NULL),
nrow = sqrt(length(matrix_str)), byrow=TRUE,
dimnames = list(stages, stages)) # build the matriz with the new value
# reset the starting stage distribution for simulation (all with 10 individuals)
m <- rep(10, no_stages)
for (j in 1:niter) { # project the matriz through t iteration
# stage distribution at time t
stagel,j] <- m
# population size at time t
popljl <- sum(m)
# number of male adults at time t
M2 <- stagel4, j]
# number of female adults at time t
F2 <- stagel[2, jl
# Female freq—dep fecundity of Female chicks
A[1,no_stages/2] <- ((k*M2)/(M2+(F2/h)))*HSR
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}

# Female freq—dep fecundity of Male chicks
A[(no_stages/4)*3,no_stages/2] <- ((k*M2)/(M2+(F2/h)))*HSR
# Male freq-dep fecundity of Female chicks
Al1,no_stages] <= ((k*F2)/(M2+(F2/h)))*HSR
# Male freq—dep fecundity of Male chicks
A[(no_stages/4)*3,no_stages] <- ((k*F2)/M2+(F2/n)))*HSR
# define the new n (i.e., new stage distribution at time t)
m <- A %% m
}
# define rownames of stage matriz
rownames (stage) <- rownames(A)
# define colnames of stage matriz
colnames(stage) <- 0:(niter - 1)
# calculate the proportional stable stage distribution
stage <- apply(stage, 2, function(x) x/sum(x))
# define stable stage as the last stage
stable.stage <- stagel, niter]
# calc ASR as the proportion of the adult stable stage class that is male
vr_pert_ASR[i, g] <- stable.stagel[no_stages]/(stable.stage[no_stages/2] +
stable.stage[no_stages])
# calc lambda as the pop change in the counts of the last two iterations
vr_pert_lambdal[i, g] <- pop[niter]/pop[niter - 1]
}
# get the spline function of ASR
spl_ASR <- smooth.spline(vr_pert_ASR[,g] ~ rownames(vr_pert_ASR))
# estimate the slope of the tangent of the spline at the vital rate
ASR_pert_results[g, 2] <- predict(spl_ASR, x=vr[[g]l], deriv=1)8y
# re-scale sensitivity into elasticity
ASR_pert_results[g, 3] <- vr[[gl]/ASR * ASR_pert_results[g, 2]
# do the same steps but for lambda
spl_lambda <- smooth.spline(vr_pert_lambdal,g] ~ rownames(vr_pert_lambda))
lambda_pert_results[g, 2] <- predict(spl_lambda, x=vr[[g]], deriv=1)$y
lambda_pert_results[g, 3] <- vrl[[gl]l/lambda * lambda_pert_results[g, 2]

# perturbation of the h index parameter
for (i in 1:length(h_nums)) # pick a perturbation level

{

A <- matrix(sapply(matrix_str, eval, vr, NULL),
nrow = sqrt(length(matrix_str)), byrow=TRUE,

dimnames = list(stages, stages)) # build the matriz with the new value
# reset the starting stage distribution for simulation (all with 10 individuals)

m <- rep(10, no_stages)
for (j in 1:niter) { # project the matriz through t iteration
# stage distribution at time t
stage[,j] <- m
# population size at time t
popljl <- sum(m)
# number of male adults at time t
M2 <- stagel4, jl
# number of female adults at time t
F2 <- stagel[2, jl
# Female freq—dep fecundity of Female chicks
A[1,no_stages/2] <= ((k*M2)/M2+(F2/h_nums[i]))) *HSR
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# Female freq-dep fecundity of Male chicks
A[(no_stages/4)*3,no_stages/2] <- ((k*M2)/(M2+(F2/h_nums([i])))*HSR
# Male freq-dep fecundity of Female chicks
A[1,no_stages] <- ((k*F2)/M2+(F2/h_nums[i]))) *HSR
# Male freq—dep fecundity of Male chicks
A[(no_stages/4)*3,no_stages] <- ((k*F2)/(M2+(F2/h_nums[i])))*HSR
# define the new n (i.e., new stage distribution at time t)
m <- A %*% m
}
# define rownames of stage matriz
rownames (stage) <- rownames(A)
# define colnames of stage matriz
colnames(stage) <- 0:(niter - 1)
# calculate the proportional stable stage distribution
stage <- apply(stage, 2, function(x) x/sum(x))
# define stable stage as the last stage
stable.stage <- stagel, niter]
# calc ASR as the proportion of the adult stable stage class that ts male
h_pert_ASR[i,] <- stable.stage[no_stages]/(stable.stage[no_stages/2] + stable.stagel[no_stages])
# calc lambda as the pop change in the counts of the last two iterations
h_pert_lambda[i, ] <- pop[niter]/pop[niter - 1]
}
# get the spline function of ASR
spl_ASR <- smooth.spline(h_pert_ASR[, 1] ~ rownames(h_pert_ASR))
# estimate the slope of the tangent of the spline at the wital rate
ASR_pert_results[n+1, 2] <- predict(spl_ASR, x=h, deriv=1)$y
# re-scale sensttivity into elasticity
ASR_pert_results[n+1l, 3] <- h/ASR * ASR_pert_results([n+1, 2]
# do the same steps but for lambda
spl_lambda <- smooth.spline(h_pert_lambdal[,1] ~ rownames(h_pert_lambda))
lambda_pert_results[n+l, 2] <- predict(spl_lambda, x=h, deriv=1)$y
lambda_pert_results[n+1l, 3] <- h/lambda * lambda_pert_results[n+1, 2]

# perturbation of k parameter
for (i in 1:length(k_nums)) # pick a perturbation level
{
A <- matrix(sapply(matrix_str, eval, vr, NULL),
nrow = sqrt(length(matrix_str)), byrow=TRUE,
dimnames = list(stages, stages)) # build the matriz with the new value
# reset the starting stage distribution for simulation (all with 10 individuals)
m <- rep(10, no_stages)
for (j in 1:niter) { # project the matriz through t iteration
# stage distribution at time t
stage[,j] <- m
# population size at time t
popljl <- sum(m)
# number of male adults at time t
M2 <- stagel4, j]
# number of female adults at time t
F2 <- stagel[2, j]
# Female freq-dep fecundity of Female chicks
A[1,no_stages/2] <- ((k_nums[i]*M2)/(M2+(F2/h)))*HSR
# Female freq-dep fecundity of Male chicks
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A[(no_stages/4)*3,no_stages/2] <- ((k_nums[i]*M2)/(M2+(F2/h)))*HSR
# Male freq-dep fecundity of Female chicks
A[1,no_stages] <- ((k_nums[i]*F2)/M2+(F2/h)))*HSR
# Male freq—dep fecundity of Male chicks
A[(no_stages/4)*3,no_stages] <- ((k_nums[i]*F2)/(M2+(F2/h)))*HSR
# define the new n (i.e., new stage distribution at time t)
m <- A %*% m
}
# define rownames of stage matriz
rownames (stage) <- rownames(A)
# define colnames of stage matriz
colnames(stage) <- 0:(niter - 1)
# calculate the proportional stable stage distribution
stage <- apply(stage, 2, function(x) x/sum(x))
# define stable stage as the last stage
stable.stage <- stagel, niter]
# calc ASR as the proportion of the adult stable stage class that is male
k_pert_ASR[i,] <- stable.stagel[no_stages]/(stable.stage[no_stages/2] +
stable.stage[no_stages])
# calc lambda as the pop change in the counts of the last two iterations
k_pert_lambdal[i, ] <- popl[niter]/popl[niter - 1]
}
# get the spline function of ASR
spl_ASR <- smooth.spline(k_pert_ASR[,1] ~ rownames(k_pert_ASR))
# estimate the slope of the tangent of the spline at the wital rate
ASR_pert_results[n+2, 2] <- predict(spl_ASR, x=k, deriv=1)$y
# re-scale sensttivity into elasticity
ASR_pert_results[n+2, 3] <- k/ASR * ASR_pert_results([n+2, 2]
# do the same steps but for lambda
spl_lambda <- smooth.spline(k_pert_lambdal[,1] ~ rownames(k_pert_lambda))
lambda_pert_results[n+2, 2] <- predict(spl_lambda, x=k, deriv=1)$y
lambda_pert_results[n+2, 3] <- k/lambda * lambda_pert_results[n+2, 2]
# perturbation of HSR
for (i in 1:length(vr_nums)) # pick a perturbation level
{
A <- matrix(sapply(matrix_str, eval, vr, NULL),
nrow = sqrt(length(matrix_str)), byrow=TRUE,
dimnames = list(stages, stages)) # build the matriz with the new value
# reset the starting stage distribution for simulation (all with 10 individuals)
m <- rep(10, no_stages)
for (j in 1:niter) { # project the matriz through t iteration
# stage distribution at time t
stagel[,j] <- m
# population size at time t
popljl <- sum(m)
# number of male adults at time t
M2 <- stagel4, j]
# number of female adults at time t
F2 <- stagel2, j]
# Female freq-dep fecundity of Female chicks
A[1,no_stages/2] <= ((k*M2)/M2+(F2/h)))*vr_nums [i]
# Female freq-dep fecundity of Male chicks
A[(no_stages/4)*3,no_stages/2] <- ((k*M2)/(M2+(F2/h)))*vr_nums [i]
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# Male freq-dep fecundity of Female chicks
A[1,no_stages] <= ((k*F2)/M2+(F2/h)))*vr_nums [i]
# Male freq—dep fecundity of Male chicks
A[(no_stages/4)*3,no_stages] <- ((k*F2)/(M2+(F2/h)))*vr_nums[i]
# define the new n (t.e., new stage distribution at time t)
m <- A %% m
}
# define rownames of stage matriz
rownames (stage) <- rownames(A)
# define colnames of stage matriz
colnames(stage) <- 0:(niter - 1)
# calculate the proportional stable stage distribution
stage <- apply(stage, 2, function(x) x/sum(x))
# define stable stage as the last stage
stable.stage <- stagel, niter]
# calc ASR as the proportion of the adult stable stage class that is male
HSR_pert_ASR[i,] <- stable.stage[no_stages]/(stable.stage[no_stages/2] +
stable.stage[no_stages])
# calc lambda as the pop change in the counts of the last two iterations
HSR_pert_lambdal[i, ] <- popl[niter]/popl[niter - 1]
}
# get the spline function of ASR
spl_ASR <- smooth.spline(HSR_pert_ASR[,1] ~ rownames(HSR_pert_ASR))
# estimate the slope of the tangent of the spline at the wital rate
ASR_pert_results[n+3, 2] <- predict(spl_ASR, x=HSR, deriv=1)%y
# re-scale sensitivity into elasticity
ASR_pert_results[n+3, 3] <- HSR/ASR * ASR_pert_results[n+3, 2]
# do the same steps but for lambda
spl_lambda <- smooth.spline(HSR_pert_lambdal[,1] ~ rownames(HSR_pert_lambda))
lambda_pert_results[n+3, 2] <- predict(spl_lambda, x=HSR, deriv=1)8$y
lambda_pert_results[n+3, 3] <- HSR/lambda * lambda_pert_results[n+3, 2]
# store all results into a list
result <- list(ASR_pert_results = ASR_pert_results,
lambda_pert_results = lambda_pert_results)

}

LTRE_ analysis() estimates the contribution that each vital rate has on ASR bias, given the sensitivities
calculated in the previous function (see formula 8 on page 133 of Veran and Beissinger (2009))
LTRE_analysis <-

function(Mprime_sens, matrix_str, vital_rates){

# make empty dataframes to stroe LTRE results for ASR and lambda
LTRE_ASR <-
data.frame(parameter = c("Chick survival", "Juvenile survival",
"Adult survival", "Hatching sex ratio",
"Mating system"),
contribution = numeric(5))

LTRE_lambda <-
data.frame(parameter = c("Chick survival", "Juvenile survival",
"Adult survival", "Hatching sex ratio",
"Mating system"),
contribution = numeric(5))
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# run a for loop to extract the parameter contributions

for(i in 1:nrow(LTRE_ASR))

{

LTRE_ASR[i, 2] <-
ifelse(i < 4, (vital_rates[[i + 3]] - vital_rates[[i]]) *
Mprime_sens$ASR_pert_results$sensitivities[i + 3],
ifelse(i == 4, ((1-vital_rates[[9]]) - vital_rates[[9]]) =*
Mprime_sens$ASR_pert_results$sensitivities[9],
(1 - vital_rates[[7]]) * Mprime_sens$ASR_pert_results$sensitivities[7]))

}

for(i in 1:nrow(LTRE_lambda))
{
LTRE_lambdali, 2] <-
ifelse(i < 4, (vital_rates[[i + 3]] - vital_rates[[i]]) =*
Mprime_sens$lambda_pert_results$sensitivities[i + 3],
ifelse(i == 4, (vital_rates[[9]] - (1-vital_rates[[9]])) =*
Mprime_sens$lambda_pert_results$sensitivities[9],
(vital_rates[[7]] - 1) * Mprime_sens$lambda_pert_results$sensitivities[7]))

3

LTRE_ASR$parameter <- factor (LTRE_ASR$parameter, levels = c("Adult survival",
"Juvenile survival",
"Chick survival",
"Hatching sex ratio",
"Mating system"))

LTRE_lambda$parameter <- factor (LTRE_lambda$parameter, levels = c("Adult survival",
"Juvenile survival",
"Chick survival",
"Hatching sex ratio",
"Mating system"))

LTRE_results <- 1list(LTRE_ASR = LTRE_ASR,
LTRE_lambda = LTRE_lambda)
}

define the iterations variable as a factor

survival_rates_boot$iter <- as.factor(survival_rates_boot$iter)

summarise the bootstrap stage- and sex-specific survival rates for the deterministic matrix

survival_rates_boot_summary <-

Rmisc: :summarySE(survival_rates_boot,
measurevar = '"estimate",
groupvars = c("sex_stage"),
conf.interval = 0.95)

define deteriministic Ceuta vital rates estimated from mark-recapture analysis. This are the “treatment”
rates observed in the field:

VR_treat <- list(F_Chk_survl = survival_rates_boot_summary[2,3],
F_Juv_survl = survival_rates_boot_summary[3,3],
F_Adt_survl = survival_rates_boot_summary[1,3],
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M_Chk_survl = survival_rates_boot_summary[5,3],
M_Juv_survl = survival_rates_boot_summary[6,3],
M_Adt_survl = survival_rates_boot_summary[4,3],

# Define h (harem size, h = 1 is monogamy) and k (clutch stize)
h = h,

k = 3,

# Define primary sex ratio

HSR = HSR)

Define vital rates of the M prime matrix (i.e., average between a “control matrix” and the “treatment
matrix”). The control matrix is a matrix in which the female vital rates are set to the male vital rates, and
the treatment matrix is the matrix containing the sex-specific values estimated from the field (see formula 8
on page 133 of Veran and Beissinger (2009)). The M-prime matrix is the average matrix of the treatment
and control matricies:

VR_mprime <- list(F_Chk_survl (survival_rates_boot_summary[2,3] +
survival_rates_boot_summary([5,3])/2,

(survival_rates_boot_summary[3,3] +
survival_rates_boot_summary[6,3])/2,

F_Adt_survl = (survival_rates_boot_summary[1,3] +
survival_rates_boot_summary[4,3])/2,

(survival_rates_boot_summary[5,3] +
survival_rates_boot_summary[5,3])/2,

(survival_rates_boot_summary[6,3] +
survival_rates_boot_summary[6,3])/2,

(survival_rates_boot_summary([4,3] +
survival_rates_boot_summary[4,3])/2,

# Define h (harem size, h = 1 is monogamy) and k (clutch stize)

h = (h+1)/2,

k = 3,

# Define primary sex ratio

HSR = (HSR+0.5)/2)

F_Juv_survl

M_Chk_survl

M_Juv_survl

M_Adt_survl

specify the struture of the matrix (i.e. show the lower-level element functions)

matrix_structure <- expression(
# top row of matriz
0, NA, O, NA,

# second row of matriz
(F_Chk_survl * F_Juv_survl), F_Adt_survl, 0, O,

# third row of matriz
0, NA, O, NA,

# fourth row of matriz
0, 0, (M_Chk_survl * M_Juv_survl), M_Adt_survl

build the treatment matrix

treatment_matrix <- plover_matrix(VR_treat)

build the M-prime matrix
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M_prime_matrix <- plover_matrix(VR_mprime)

determine the ASR at the stable stage distribution

treatment_ASR_analysis <-
matrix_ASR(M = treatment _matrix, h = h, HSR = VR_treat$HSR, iterations = 1000)
ASR_treat <- treatment_ASR_analysis$ASR
ASR_treat
#> M_Adt
#> 0.6328887

M_prime_ASR_analysis <-
matrix_ASR(M = M_prime_matrix, h = 1, HSR = VR_mprime$HSR, iterations = 1000)
ASR_mprime <- M_prime_ASR_analysis$ASR
ASR_mprime
#> M_Adt
#> 0.5618169

specify the lambda of the matrices

lambda_treat <- treatment_ASR_analysis$lambda
lambda_treat
#> [1] 0.8511694

lambda_mprime <- M_prime_ASR_analysis$lambda
lambda_mprime
#> [1] 0.8686893

conduct a sensitivity analysis on the treatment matrix

treat_sensitivity_analysis <-
sensitivity_analysis(vital_rates = VR_treat,
matrix_str = matrix_structure,
h = VR_treat$h,
k = VR_treat$k,
HSR = VR_treat$HSR,
niter = 1000,
ASR = ASR_treat,
lambda = lambda_treat)

conduct a sensitivity analysis on the M-Prime matrix
Mprime_sensitivity_analysis <-
sensitivity_analysis(vital_rates = VR_mprime,
matrix_str = matrix_structure,
h = VR_mprime$h,
k = VR_mprime$k,
HSR = VR_mprime$HSR,
niter = 1000,
ASR = ASR_mprime,
lambda = lambda_mprime)

conduct the LTRE comparing the two matrices
LTRE_plover <-
LTRE_analysis(Mprime_sens = Mprime_sensitivity_analysis,
matrix_str = matrix_str,
vital_rates = VR_treat)

38



custom color

cbPalette <

palette for the plotting of Juvenile and Adult stats
- c("#AGAGA6", "#D9D9D9", "#DODOD9", "#DODOD9", "#AGAGAE6")

Figure 2c: plot the comparative LTRE results

Background_
ggplot2::

coord_fli
theme_bw (
annotate (

annotate (

annotate(

LTRE_ASR <-
ggplot(data = LTRE_plover$LTRE_ASR,

aes(x = parameter, y = contribution, fill = parameter)) +
pO +
) +
"rect", xmin=-Inf, xmax=Inf, ymin=-Inf, ymax=0, alpha=0.6,
fill=brewer.pal(8, "Dark2")[c(2)]) +
"rect", xmin=-Inf, xmax=Inf, ymin=0, ymax=Inf, alpha=0.6,
fill=brewer.pal(8, "Dark2")[c(1)]) +
"text", x = c(2,2), y = c(-0.1, 0.1),
label = c("female", "male"), size = 7,
vjust = c(1,1), hjust = c(0.5,0.5), angle = c(90, 270)) +

theme (text = element_text(color = "white"),
legend.position = "none",
axis.title.x = element_text(size=12, margin = margin(10, 0, 0, 0)),
axis.text.x = element_text(size=10, margin = margin(5, 0, 0, 0)),
axis.title.y = element_text(size=12, margin = margin(0, 10, 0, 0)),
axis.text.y = element_text(size=10, angle = 0, hjust =1,

margin = margin(0, 5, 0, 0)),

panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),

axi
axi
axi

s.ticks.y = element_blank(),
s.ticks.x = element_line(size = 0.5, colour = "white"),
s.ticks.length = unit(0.2, "cm"),

panel.border = element_blank(),

plo

t.margin = unit(c(1,0.5,0.5,2.85), "cm"),

panel.spacing = unit(0.75, "lines"),

str
str

ip.background = element_blank(),
ip.text = element_blank()) +

ylab("Contribution to adult sex ratio") +

xlab("Sex bias in parameter") +

scale_fill_manual(values = cbPalette) +

scale_y_continuous(limits = c(-0.1, 0.1)) +

scale_x_discrete(labels = c("Adult survival" = "Adult surv.",
"Juvenile survival" = "Fledg. surv",
"Chick survival" = "Chick surv.",
"Hatching sex ratio" = "Hatching SR",
"Mating system" = "Mat. sys."))

LTRE_ASR <-
ggplot2: :ggplot () +
theme_bw() +

coord_flip() +

geom_bar (data = LTRE_plover$LTRE_ASR,
aes(x = parameter, y = contribution, fill = parameter), color =
theme (legend.position = "none",
panel.background = element_rect(fill = "transparent",colour = NA),
plot.background = element_rect(fill = "transparent",colour = NA),
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axis.title.x = element_text(size=12, margin = margin(10, 0, 0, 0)),
axis.text.x = element_text(size=10, margin = margin(5, 0, 0, 0)),
axis.title.y = element_text(size=12, margin = margin(0, 10, 0, 0)),
axis.text.y element_text(size=10, angle = 0, hjust = 1,

margin = margin(0, 5, 0, 0)),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),

axis.ticks.y = element_line(size = 0.5, colour = "grey40"),
axis.ticks.length = unit(0.2, "cm"),

axis.ticks.x = element_line(size = 0.5, colour = "grey40"),
panel.border = element_rect(linetype = "solid", colour = '"grey"),

plot.margin = unit(c(1,0.5,0.5,0.5), "cm"),
panel.spacing = unit(0.75, "lines"),
strip.background = element_blank(),
strip.text = element_blank()) +
ylab("Contribution to adult sex ratio") +
xlab("Sex bias in parameter") +
scale_fill_manual(values = cbPalette) +
scale_y_continuous(limits = c¢(-0.10, 0.10)) +

scale_x_discrete(labels = c("Adult survival" = "Adult surv.",
"Juvenile survival" = "Fledg. surv",
"Chick survival" = "Chick surv.",
"Hatching sex ratio" = "Hatching SR",
"Mating system" = "Mat. sys."))

# draw the background and the LTRE on top of eachother for the final plot
grid.newpage ()
pushViewport (viewport(layout = grid.layout(l, 1, widths = unit(l, "npc"))))
print (Background_LTRE_ASR + theme(legend.position="none"),

vp = viewport(layout.pos.row = 1 ,layout.pos.col = 1))
print (LTRE_ASR + theme(legend.position="none"),

vp = viewport(layout.pos.row = 1, layout.pos.col = 1))
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Determine how much larger the contribution of each vital rates is compared to juvenile survival juvenile vs
chick:

LTRE_plover$LTRE_ASR[2,2]/LTRE_plover$LTRE_ASR[1,2]
#> [1] 3.278018

juvenile vs adult:

LTRE_plover$LTRE_ASR[2,2] /LTRE_plover$LTRE_ASR[3,2]
#> [1] 16.9537

chick vs adult:

LTRE_plover$LTRE_ASR[1,2]/LTRE_plover$LTRE_ASR[3,2]
#> [1] 5.171937

Sensitivity analysis of population growth

Biased ASR and polygamous mating systems can restrict the reproductive potential of a population due to a
scarcity of the limiting sex (Caswell & Weeks 1986). Thus, population viability can be indirectly affected by
ASR and mating system via the sex-specific effects that vital rates have on population growth under a biased
ASR or a polygamous mating system, or both (Haridas et al. 2014). To investigate the relative influence that
a biased ASR or a polygamous mating system has on population growth, we conducted a sensitivity analysis
of all sex-specific parameters using four scenarios of the two-sex model: (i) polyandrous and male-biased ASR
(i.e. the observed scenario), (ii) polyandrous and unbiased ASR, (iil) monogamous and male-biased ASR, and
(iv) monogamous and unbiased ASR.
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Here are the four scenarios and the structure of their vital rates:

VR_equal_mono <- list(F_Chk_survl = survival_rates_boot_summary[5,3],
F_Juv_survl = survival_rates_boot_summary[6,3],
F_Adt_survl = survival_rates_boot_summary[4,3],
M_Chk_survl = survival_rates_boot_summary[5,3],
M_Juv_survl = survival_rates_boot_summary[6,3],
M_Adt_survl = survival_rates_boot_summary[4,3],
# Define h (harem size, h = 1 is monogamy) and k (clutch stze)

h=1,

k =3,

# Define primary sex ratio
HSR = 0.5)

VR_equal_poly <- list(F_Chk_survl = survival_rates_boot_summary[5,3],
F_Juv_survl = survival_rates_boot_summary[6,3],
F_Adt_survl = survival_rates_boot_summary[4,3],
M_Chk_survl = survival_rates_boot_summary[5,3],
M_Juv_survl = survival_rates_boot_summary[6,3],
M_Adt_survl = survival_rates_boot_summary[4,3],
# Define h (harem size, h = 1 is monogamy) and k (clutch stze)

h =h,

k =3,

# Define primary sex ratio
HSR = 0.5)

VR_diff_mono <- list(F_Chk_survl = survival_rates_boot_summary([2,3],
F_Juv_survl = survival_rates_boot_summary[3,3],
F_Adt_survl = survival_rates_boot_summary[1,3],
M_Chk_survl = survival_rates_boot_summary[5,3],
M_Juv_survl = survival_rates_boot_summary[6,3],
M_Adt_survl = survival_rates_boot_summary[4,3],
# Define h (harem size, h = 1 is monogamy) and k (clutch size)

h=1,

k = 3,

# Define primary sex ratio
HSR = 0.5)

Convert the vital rates lists into the two-sex ptrojection matrix using the plover__matrix() function

equal_mono_mat <- plover_matrix(VR_equal_mono)
equal_poly_mat <- plover_matrix(VR_equal_poly)
diff_mono_mat <- plover_matrix(VR_diff_mono)

Derive equilibrium statistics (i.e., ASR and lambda) of each scenario using the matrix_ ASR() function
equal_mono_ASR_analysis <-

matrix_ASR(M = equal_mono_mat, h = 1, HSR = 0.5, iterations
ASR_equal_mono <- equal_mono_ASR_analysis$ASR
ASR_equal_mono
#> M Adt
#> 0.5

1000)

equal_poly_ASR_analysis <-
matrix_ASR(M = equal_poly_mat, h = h, HSR = 0.5, iterations = 1000)
ASR_equal_poly <- equal_poly_ASR_analysis$ASR
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ASR_equal_poly
#> M_Adt
#> 0.5

diff mono_ASR_analysis <-
matrix_ASR(M = diff_mono_mat, h = 1, HSR = 0.5, iterations
ASR_diff_mono <- diff_mono_ASR_analysis$ASR
ASR_diff_mono
#> M_Adt
#> 0.6330502

Specify the lambda of each scenario

lambda_equal_mono <- equal_mono_ASR_analysis$lambda
lambda_equal_mono
#> [1] 0.8914422

lambda_equal_poly <- equal_poly_ASR_analysis$lambda
lambda_equal_poly
#> [1] 0.9071447

lambda_diff_mono <- diff_mono_ASR_analysis$lambda
lambda_diff mono
#> [1] 0.8460346

Run the sensitivity analysis on each scenario

equal_mono_sensitivity_analysis <-
sensitivity_analysis(vital_rates = VR_equal_mono,
matrix_str = matrix_structure,
h = VR_equal_mono$h,
k = VR_equal_mono$k,
HSR = VR_equal_mono$HSR,
niter = 1000,
ASR = ASR_equal_mono,
lambda = lambda_equal_mono)

equal_poly_sensitivity_analysis <-

sensitivity_analysis(vital_rates = VR_equal_poly,
matrix_str = matrix_structure,
h = VR_equal_poly$h,
k = VR_equal_poly$k,
HSR = VR_equal_poly$HSR,
niter = 1000,
ASR = ASR_equal_poly,
lambda = lambda_equal_poly)

diff_mono_sensitivity_analysis <-
sensitivity_analysis(vital_rates = VR_diff_mono,

matrix_str = matrix_structure,
h = VR_diff_mono$h,
k = VR_diff_mono$k,
HSR = VR_diff_mono$HSR,
niter = 1000,
ASR = ASR_diff_mono,
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lambda = lambda_diff_mono)

Tidy up the dataframe for plotting

# mame each scenario
equal_mono_sensitivity_analysis$lambda_pert_results$model <- "equal_mono"
equal_poly_sensitivity_analysis$lambda_pert_results$model <- "equal_poly"
diff_mono_sensitivity_analysis$lambda_pert_results$model <- "diff mono"
treat_sensitivity_analysis$lambda_pert_results$model <- "diff poly"

# bind them together

lambda_elasticities <- rbind(equal_mono_sensitivity_analysis$lambda_pert_results[-8,-2],
equal_poly_sensitivity_analysis$lambda_pert_results[-8,-2],
diff_mono_sensitivity_analysis$lambda_pert_results[-8,-2],
treat_sensitivity_analysis$lambda_pert_results[-8,-2])

# define the vital rates for males and females
lambda_elasticities$vital_rate <-
as.factor(c("Chick_survival", "Juvenile survival", "Adult_survival", "Chick_survival",
"Juvenile_survival", "Adult_survival", "Mating_system", "Hatching_sex_ratio"))

# classify the levels of the wvital rates
lambda_elasticities$vital_rate <- factor(lambda_elasticities$vital_rate,
levels = c("Adult_survival", "Juvenile_survival",
"Chick_survival", "Hatching_sex_ratio",
"Mating_system"))

# define the sex that each vital rate is rTepresenting

lambda_elasticities$sex <- as.factor(c("Female", "Female",
"Female", "Male",
"Male", "Male",
"Female", "Female"))

# create a unique name for each scemario and vital Tate combination
lambda_elasticities$model_vital_rate <- as.factor(paste(lambda_elasticities$model,
lambda_elasticities$vital_rate, sep = "_"))

# classify the levels of the scenarios
lambda_elasticities$model <- factor(lambda_elasticities$model,
levels = c("diff_mono", "diff_poly", "equal_mono", "equal_poly"))

Figure 3: plot the elasticities of lambda to perturbations of each parameter under the four scenarios

# define the color palette to use in plotting
cbPalette <- c("#e8ad7e", "#88c6b2")

# spectify the facet labels
scenario_names <- c(

“diff_mono~ = "Male-biased ASR\nmonogamy",
“diff_poly ™ = "Male-biased ASR\npolyandry",
“equal_mono”~ = "Even ASR\nmonogamy",
“equal_poly” = "Even ASR\npolyandry"

)

lambda_elasticity <-
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ggplot2: :ggplot() +
theme_bw() +
coord_flip() +
geom_bar(data = filter(lambda_elasticities, sex == "Female"),

aes(x = vital_rate, y = elasticities*-1, fill = sex),

color = "black", stat = "identity", alpha = 1) +
geom_bar(data = filter(lambda_elasticities, sex == "Male"),

aes(x = vital_rate, y = elasticities, fill = sex),

color = "black", stat = "identity", alpha = 1) +
annotate("text", x = c(3), y = c(-0.375),

label = c("female"),

vjust = c(0.5), angle = 90, size = 5) +
annotate("text", x = c(3), y = c(0.375),

label = c("male"),

vjust = c(0.5), angle

270, size = 5) +

facet_grid(model ~ ., labeller = as_labeller(scenario_names)) +

theme (legend.position = "none",
panel.background = element_rect(fill = "transparent", colour = NA),
plot.background = element_rect(fill = "transparent", colour = NA),
axis.title.x = element_text(size=12, margin = margin(10, 0, 0, 0)),
axis.text.x = element_text(size=10, margin = margin(5, 0, 0, 0)),
axis.title.y = element_text(size=12, margin = margin(0, 10, 0, 0)),
axis.text.y = element_text(size=10, angle = 0, hjust = 1,

margin = margin(0, 5, 0, 0)),
panel.grid.major.y = element_blank(),
panel.grid.minor = element_blank(),

axis.ticks.y = element_line(size = 0.5, colour = '"grey40"),
axis.ticks.length = unit(0.2, "cm"),
axis.ticks.x = element_line(size = 0.5, colour = "grey40"),

panel.border = element_rect(linetype = "solid", colour = "grey"),
plot.margin = unit(c(1,0.5,0.5,0.5), "cm"),
panel.spacing = unit(0.75, "lines")) +

ylab("Elasticity of population growth") +

xlab("Sex-specific parameter") +

scale_fill_manual(values = cbPalette) +

scale_y_continuous(limits = c(-0.5, 0.5), breaks = c(-0.5, -0.25, 0, 0.25, 0.5),

labels = c("0.5", "0.25", "0", "0.25", "0.5")) +

scale_x_discrete(labels = c("Adult_survival" = "Adult surv",
"Juvenile_survival" = "Fledg. surv",
"Chick_survival" = "Chick surv",
"Hatching_sex_ratio" = "Hatching SR",
"Mating_system" = "Mating sys."))

lambda_elasticity
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Elasticity of population growth

Predicitive accuracy of two-sex and one-sex matrix models

this function extracts the deterministic lambda from each bootstrap iteration using a two-sex matrix and a
one-sex matrix that has sex-averaged vital rates and constant fecundity
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lambda_extract <-

function(survival_rates, niter

= 1000){

# make an empty datarame to store the results
output <- data.frame(two_sex_lambda =

one_sex_lambda =
# for loop to go through each iteration and calculate the differece between female and male
# survival rates for each stage.

for(i in 1:niter){

numeric(niter),
numeric(niter))

# Create a list of demographic rates from the survival analyses above

VR_two_sex_boot <- list(F_
F_
F_
M_
M_
M_

#
h
k
#

HS
VR_one_sex_boot <- list(Chk_survl

Juv_survl =

Chk_survl
Juv_survl
Adt_survl
Chk_survl

Juv_survl =

Adt_survl

survival_rates[which(survival_rates$iter ==
survival_rates[which(survival_rates$iter ==
survival_rates[which(survival_rates$iter ==
survival_rates[which(survival_rates$iter ==
survival_rates[which(survival_rates$iter ==
survival_rates[which(survival_rates$iter ==

Define h (harem size, h < 1 is polyandry) and k (clutch

= h,
= 3,

Define primary sex ratio (assumed to be 0.5)

R = HSR)

Adt_survl =

mean (survival_rates[which(survival_rates$iter

mean(survival_rates[which(survival_rates$iter =
survival_rates[which(survival _rates$iter =
mean(survival_rates[which(survival_rates$iter =

survival_rates[which(survival_rates$iter

survival_rates[which(survival_rates$iter

# female fecundity

RF =

RF)

# Butld matriz based on rates specified in the list abowe

two_sex_matrix_boot <- plover_matrix(VR_two_sex_boot, two_sex
one_sex_matrix_boot <- plover_matrix(VR_one_sex_boot, two_sex

TRUE)
FALSE)

# Determine the ASR at the stable stage distribution

two_sex_lambda <-

matrix_ASR(M = two_sex_matrix_boot, h = VR_two_sex_boot$h,
HSR = VR_two_sex_boot$HSR, iterations = 75)

one_sex_lambda <-

Re(eigen(one_sex_matrix_boot)$values) [1]

# Extract ASR

output[i, 1] <- two_sex_lambda$lambda

output[i, 2] <- one_sex_lambda

}

# restructure the output and lable columns
output <- suppressMessages(reshape2::melt(data = output))

colnames (output) <- c("parameter",

# return the output
output
b

Apply the function to the bootstrap output

"estimate")
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lambda_boot <- lambda_extract(survival_rates = survival_rates_boot, niter = 1000)

calculate the 95% confidence intervals and means of the two-sex and one-sex versions of the matrix model

CI <- 0.95
lambda_boot_summary <-
lambda_boot%>%
dplyr: :group_by (parameter)%>%
dplyr: :summarise(mean = mean(estimate),
1cl = quantile(estimate, (1 - CI)/2),
ucl = quantile(estimate, 1 - (1 - CI)/2))

Store the actual annual population size estimate from the field and calculate the mean of the popualtion
growth rate observed over the seven-year period

Actual <- c(198, 184, 98, 102, 131, 96, 58)

Actual_lambda <- c(Actual[2]/Actual[1],
Actual [3]/Actuall2],
Actual[4]/Actual[3],
Actual [5] /Actuall[4],
Actual[6]/Actual[5],
Actual[7]/Actual[6])

Actual_lambda_mean <- mean(Actual_lambda)

Figure 4: plot the predicted lambda distributions of the two-sex and one-sex model simulations between 2006
and 2012, including 95% CI and the observed average population growth.

cbPalette <- c(brewer.pal(8, "Setl")[c(1)], brewer.pal(9, "Greys") [c(9)])
lambda_histogram <-

ggplot() +
geom_histogram(binwidth = 0.005, data = filter(lambda_boot, parameter == "two_sex_lambda'),
aes(x = estimate, fill = parameter), alpha = 0.7) +
geom_histogram(binwidth = 0.005, data = filter(lambda_boot, parameter == "one_sex_lambda'),

aes(x = estimate, fill = parameter), alpha = 0.7) +
geom_vline(xintercept = Actual_lambda_mean, color = brewer.pal(8, "Setl")[c(2)], size=1) +
geom_errorbarh(data = filter(lambda_boot_summary, parameter == "two_sex_lambda"),

aes(y = 95, x = 1lcl, xmin = lcl, xmax = ucl),

color "black", size = 0.8, linetype = "solid") +
geom_errorbarh(data = filter(lambda_boot_summary, parameter == "one_sex_lambda"),

aes(y = 93, x = 1lcl, xmin = 1lcl, xmax = ucl),

color = brewer.pal(8, "Set1")[c(1)], size = 0.8, linetype = "solid") +

theme_bw() +
theme (legend.text = element_text(size = 8),
legend.title = element_blank(),
legend.position = "top",
legend.key.height=unit(0.6,"line"),
legend.key.width=unit(0.6,"line"),
axis.title.x = element_text(size=12, margin = margin(10, 0, 0, 0)),
axis.text.x = element_text(size=10, margin = margin(5, 0, 0, 0)),
axis.title.y = element_text(size=12, margin = margin(0, 5, 0, 0)),
element_text(size=10, angle = 0, hjust = 1,
margin = margin(0, 5, 0, 0)),
panel.grid.major = element_blank(),

axis.text.y

panel.grid.minor = element_blank(),
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axis.ticks.y = element_line(size = 0.5, colour = "grey40"),
axis.ticks.length = unit(0.2, "cm"),
axis.ticks.x = element_line(size = 0.5, colour = "grey40"),
panel.border = element_rect(linetype = "solid", colour = '"grey"),
plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm"),
panel.spacing = unit(0.75, "lines"),
strip.background = element_blank(),
strip.text = element_blank()) +
ylab("Frequency") +
xlab("Population growth rate") +
scale_y_continuous(limits = c(0, 100)) +
scale_fill_manual(values cbPalette, labels
lambda_histogram

c("One-sex model ", "Two-sex model"))
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R session information

sessionInfo()

#> R version 3.4.0 (2017-04-21)

#> Platform: x86_64-apple-darwinl5.6.0 (64-bit)

#> Running under: macOS Sierra 10.12.4

#>

#> Matriz products: default

#> BLAS: /Library/Frameworks/R. framework/Versions/3.4/Resources/lib/libRblas.0.dylsd
#> LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/1ib/libRlapack.dylid
#>

#> locale:

#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

#>

#> attached base packages:

#> [1] grid stats graphics grDevices utils datasets methods

#> [8] base
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#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

other attached packages:

[17
[41

magrittr_1.5
Bmisc_1.5

lme4_1.1-13
plyr_1.8.4

[7] RColorBrewer_1.1-2 reshape2 1.4.2

[10]
[13]

dplyr_0.5.0
RMark_2.2.2

ggplot2 2.2.1

Matriz_1.2-10
lattice_0.20-
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gridEztra_2.2.1

stringr_1.2.0

loaded via a namespace (and not attached):

[1]
[57
[9]
[13]
[17]
[21]
[25]
[29]
[33]

Rcpp_0.12.11
digest_0.6.12
gtadble_0.2.0
parallel_3.4.0
knitr_1.16
rmarkdown_1.5
scales_0.4.1
assertthat_0.2.0
lazyeval_0.2.0

nloptr_1.0.4
nlme_3.1-131
rlang _0.1.1
mvtnorm_1.0-6
rprojroot_1.2
minga_1.2.4
htmltools_0.3.6
colorspace_1.3-2
munsell_0.4.3

compiler_3.4.0
evaluate_0.10
DBI_0.6-1
expm_0.999-2
R6_2.2.1
MASS_7.3-47
matrizcalc_1.0-3
labeling 0.3
msm_1.6.4
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tools_3.4.0
tibble_1.3.1
yaml_2.1.14
coda_0.19-1
survival_2.41-3
backports_1.1.0
splines_3.4.0
stringt_1.1.5
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